Investigations of Energy Interfaces and Interphases With...

43
Investigations of Energy Interfaces and Interphases With Spatially - resolved Tools Keith J. Stevenson Skolkovo Institute of Science and Technology September 17, 2017

Transcript of Investigations of Energy Interfaces and Interphases With...

Investigations of Energy Interfaces and Interphases

With Spatially-resolved Tools

Keith J. Stevenson

Skolkovo Institute of Science and Technology

September 17, 2017

eVoc < μA -μC < Eg

Challenges for Energy Storage

Energy Density

Power Density

Stability

Electrolytes

Safety

Cost

Energy = Capacity (Q) x Voltage (V) How FAR on one charge

Power = Current (A) x Voltage (V) How FAST on one charge

Li3V2(PO4)3

Goodenough and Kim Chem. Mater. 2010, 22 (3), 587.

Challenges for Energy Storage

SEI layer formation at interface.SEI is both beneficial and detrimental

Surface reactivity changes dramatically withComposition, particle size, potential

Complex amorphous mixtures form:

Active and/or passive towards e- and Li+

Goodenough and Kim Chem. Mater. 2010, 22 (3), 587.

Inorganics

LiPF6(sol.) LiF(insol.) + PF5(gas)

Δ

-

?

Organics

Insertion/intercalation reactions

MOn + x Li+ + x e– LixMOn

Ex: Co4+O2 + x Li+ + x e– LixCo4+1-xCo3+

xO2

Conversion/displacement reactions

M2n+On + 2n Li+ + 2n e– M0 + n Li2O

Ex: Co2+O + 2 Li+ + 2 e– Co0 + Li2O

LiCoO2CoO2

CoO

Co

CoOSeveral Factors Influence Mechanistic Pathways

Morphology, Shape, Size, Defect chemistry, Phase Stability, Crystallinity

Charge separation and transfer processes not fully understood!

Basic Charge Storage Mechanisms

Charge Storage Processes

Capacitor Pseudocapacitor (Batt-Cap) Battery

Galvanostaticdischarge

Cyclic voltammetry

Current-scan rate relationship

i 0.4958nFAcDnF

RT

1/ 2

i dV

dt*C *C

i 0.4958nFAcDnF

RT

1/ 2

V

Capacity

V

Capacity

V

Capacity

i

V

i

V

i

V

+

i dV

dt*Cdl *A *Cdl *A

Informaldefinition

Diffusion controlled charge transfer (Faradaic process)

Surface charge transfer (Faradaic process)

Surface double layer capacitance(non-Faradaic process)

Typical Electrode Materials

Li(Co1/3Ni1/3Mn1/3)O2 Particles1

LiCoO2/Li(Co1/3Ni1/3Mn1/3)O2

Composite Electrode2

Silicon Nanowires4

LiCoO2

Nanotubes5

Li(Ni0.8Co0.1Mn0.1)O2

Nanoparticles3

Chemically Complex Geometrically Complex

1. Yoshizawa, H.; Ohzuku, T. J. Power Sources 2007, 174, 813.

2. Liu, Z.; et al. J. Power Sources 2013, 227, 267.3. Kim, Y. ACS Appl. Mater. Interfaces 2012, 4, 2329.

4. Song, T.; Hu, L.; Paik, U. J. Phys. Chem. Lett. 2014, 5, 720.

5. Cheng, F.; Tao, Z.; Liang, J.; Chen, J. Chem. Mater. 2008,

20, 667.

Materials Challenges In Characterization

0.1 nm 1 nm 100 nm 0.1 mm 1 mm 10 mm 100 mm 1 mm 10 mm

SPM (STM/AFM/KPFM/SECM)

ToF-SIMs

TEM/SEM

m-UV-Vis

XPS

m-Raman

XRD

Analytical Spot Size

m-FTIR

UV-Vis

FTIR

Raman

h

Homogeneous

h

Heterogeneous

Spectroscopic Techniques Limitations and

Biases

Ordered Materials

Homogeneous

Materials

Ensemble Averaged

Ex situ Environment

Slow Data Acquisition

Modern Advantages

Localized

Interrogation

2D & 3D Mapping

In situ Environment

Fast Data Acquisition

Light Microscopy

Imaging Techniques

T1: Materials T2: MechanismsNew Materials & Model Interfaces Ion Coupled Charge Transfer Dynamics

composites

single

crystals

films

devices

model

systems

synthesis of model prototypes that

climb the ladder of complexity.

surface chemistry & composition affects

rate, capacity and stability

particle-particle

interactions influence

transport

direct probes of

morphology and

phases

measurement

of interfacial

mechanisms

accurate electronic

structure, kinetics &

thermodynamics

Overview of Research Efforts

Driven by

Synthetic Developments

Driven by Characterization

& Theory Developments

Studies allow us to understand:

• kinetics and energetics of how size,

morphology, and configuration influence Li+-

coupled charge transfer, volume

expansion/contraction processes, and

phase formation mechanisms

• which factors govern charge transfer rates

within and across model nanostructures

and interfaces

• theoretical principles underlying all of the

aboveAbove: In situ spectroelectrochemical Raman

studies Li+ insertion/deinsertion in olivines.

LiMPO4 Size & Composition Library LiMPO4 Interfaces

High Resolution Studies of Model Materials

J. Wu et al. Nanotechnology 2013, 24, 424009

Raman Spectra: Experiment vs. Theory

Ѵ1 Symmetric PO43- stretch

Ѵ3 Asymmetric PO43- stretch

B1g Translational motion of Fe + PO43-

Ag,B1g, B3g Lithium cage modes

Ag, B2g Fe-O

In Situ Raman of Lithium Insertion

200 400 600 800 1000 1200

0

5000

10000

15000

FePO4

LiFePO4

charging

7654321

Charging of small LiFePO4

Ag(ν3)Ag(ν1)

External modes

electrolyteRaman Shift (cm-1)

Inte

ns

ity (

arb

. u

nit

s)

Ag(3)Ag(1)

J. Wu et al. Nanotechnology 2013, 24, 424009

In Situ Raman of Self-Discharge of FePO4

0 2 4 6 8 10

3.4

3.6

3.8

4.0

4.2

4.4

E (

V v

s L

i/L

i+)

time (hr)

Bulk

Flower

Large

Small

Sample Self-Discharge Time

Small (30 nm W 100 nm L) 2 hr

Large (230 W nm 300 nm L) 14 hr

Flower (3 mM porous) 5 hr

Bulk LFP > 1 mM > 15 hr

J. Wu et al. Nanotechnology 2013, 24, 424009

The Solid Electrolyte Interphase on

Model Systems

• Model Systems

– c-Si wafer electrodes, DC-sputtered a-Si, PE-CVD a-Si, Nano a-Si

• Accurate Analytical Characterization

– Kinetically stable compounds – take extra precaution investigating

SEI ProductsLithium Semicarbonates

Esters, Ethers, LiOxPyFz

Soluble ProductsEthylene, CO2

Reduction

& decomposition

pathways

Carbon

Hydrogen

Oxygen

Lithium

Silicon

Phosphorus

Fluorine

Si

(100)

SaltsLiPF6, LiClO4

Solvents Diethyl Carbonate,

Ethylene Carbonate

Silicon Electrode Degradation with Cycling

0

Stable

Electrolyte

Electrolyte

Decomposition

LixSi

Alloying

Li0

Plating

Po

ten

tia

l (V

vs.

Li/L

i+)

1

Cycling of Negative Electrode

Initial SEI formation

Lithiation

(Charge storage)

Delithiation

(Discharge)

Continued SEI formation

(lithium consumption)

Pristine

Negative

Electrode

Ongoing Growth at Si/SEI

interface

Wang, J. et al., J. Power Sources (2011)

Deshpande, R. et al., J. Electrochem. Soc. (2012)

Sources of Li-ion Consumption & Degradation

Y. Oumellal et al J. Mater. Chem. (2011)

CrackingSwelling/Volume

Expansion

Electrode Architecture

and Porosity/Tortuosity

Solvent

Li+

– Surface Passivation

– Ion Transport

– Solvation/desolvation

barriers

Interfacial Chemistry

SEI Formation Reaction Mechanisms on Si (100)

OR

OLiO

O

R

+ Li+

O

O

R

Li

14

OR'

O

+ R+

15

OR'

O

R

OO

OLi

OO

O+ Li+ + e-

+ Li+ O

Li

OLi

O

O

O

OLi+ e-

OO

OLi+

OO

OLi+ O

O

OLi

LiO O

O

O OLi

O

O

OLi

O

O O

OLi + Li+

LiO O

OLi

O

OLi

O

1

2 3

4 5

O O

O + Li+ + e-

O O

O Li

O OLiO+

O O

O + Li+ + e-

O O

O Li

O O

OLi+

O O

O + Li+ + e-

O O

O Li

O O

OLi+

6

7

8

OO

OLi

OO

O+ Li+ + e-

+ Li+ O

Li

OLi

O

O

O

OLi+ e-

OO

OLi+

OO

OLi+ O

O

OLi

LiO O

O

O OLi

O

O

OLi

O

O O

OLi + Li+

LiO O

OLi

O

OLi

O

1

2 3

4 5

OO

OLi

OO

O+ Li+ + e-

+ Li+ O

Li

OLi

O

O

O

OLi+ e-

OO

OLi+

OO

OLi+ O

O

OLi

LiO O

O

O OLi

O

O

OLi

O

O O

OLi + Li+

LiO O

OLi

O

OLi

O

1

2 3

4 5

OO

OLi

OO

O+ Li+ + e-

+ Li+ O

Li

OLi

O

O

O

OLi+ e-

OO

OLi+

OO

OLi+ O

O

OLi

LiO O

O

O OLi

O

O

OLi

O

O O

OLi + Li+

LiO O

OLi

O

OLi

O

1

2 3

4 5

Carbonate Products

Dominant pathways in CV and LSV

Dominant pathways in CA

OR

OLiO

O

R

+ Li+

O

O

R

Li

14

OR'

O

+ R+

15

OR'

O

R

+ Li+ + e-Li

OR

O+R

O O

OLi

RO O

OLi

Li2O

9

Li

OR'

O

+R'O O

OLi

R'O O

OLi

11

+ Li+R-

R

RLi2O

+LiR'

O O

O

12

+ Li+R-R''

R'O O

OR''

R

R''OLi

OR'

O

R

+LiR

O O

O

10

+ Li+ +e-R'

RO O

OR'

R'OLiO

RO

+ Li+ + e-Li

OR

O+R

O O

OLi

RO O

OLi

Li2O

9

Li

OR'

O

+R'O O

OLi

R'O O

OLi

11

+ Li+R-

R

RLi2O

+LiR'

O O

O

12

+ Li+R-R''

R'O O

OR''

R

R''OLi

OR'

O

R

+LiR

O O

O

10

+ Li+ +e-R'

RO O

OR'

R'OLiO

RO

Ester & Ether Products

Composition by Functionality

Atomic Percentage

Schroder et al. J. Phys. Chem. C., 2012, 116, 19737.

Time of Flight Secondary Ion Mass Spectrometry

(TOF-SIMS)

TOF-SIMS

● Surface Spectroscopy- elemental and molecular

- ppm sensitivity

- < 1 nm surface sensitivity

- > 10000 mass resolution

● Surface Imaging- lateral resolution < 100 nm

- parallel mass detection

● Depth Profiling- depth resolution < 1 nm

- thin layers 1 nm to > 10 nm

● 3D Analysis- parallel mass detection

- high lateral resolution

- high depth resolution

TOF.SIMS5, ION-TOF GmbH

The TOF-SIMS Principle

TOF-SIMS Depth Profiling

Bilayer interface consists of mixing

Interface depth profile adds corrugation and sputtering effects

ACS Nano 7 (10), 9268 (2013)

Mixing-Roughness-Information (MRI) Model

Real Interface = Mixing (Fabrication)

=

(ΔzDRF)2 = (Δzmix)2 + (Δzcorr)

2 + (Δzinf)2

=

(ΔzDRF)2+(Δzreal)2=(Δzmeas)

2

TOF-SIMS Depth Profiling

Surf. Interface Anal. 27, 825–834 (1999)

According to the MRI model the measured depth profile contains:

Information = secondary ion depth of origin

Si/SiO2/Cr(10nm)/Au(20nm)/Ag(20nm) sputtered with Bi3+ (30 kV) and Cs+ (250 V)

TOF-SIMS Depth Profiling

Thin Solid Films 250, 56 (1994)

TOF-SIMS Depth Profiling

Analysis Craters

SEI

Si Wafer

Sputter Crater (500 μm)

Bi+/Bi32+

Analysis

Crater

200-50 μm

Depth Profile

300 μm

Pre- and Post-Sputtering

Sputt

ering T

ime /

Depth

Organics

Inorganics

Wafer

1.0

0.5

0.0

Norm

aliz

ed

Sig

nal

6420-2-4-6Depth (nm)

H_ C2H

_ LiF2

_ PO

_ LiO

_ Si2

_

Schroder et al., ACS Appl. Mater. Inter. (2014)

Depth Profiling and SEI Structure Si

Etched vs. Oxide

LixO / LiOH

LiF

LixSiyO

Conclusions about SiOx effects on SEI

Lithiated vs. Delithiated

LixO / LiOHLiF

Schroder et al., ACS Appl. Mater. Inter. (2014)

Schroder et al., Chem. Mater.2015, 27, 5531.

(CF2)n + O2 → CO2 + 2F–

SiOX + XF– → SiFX + X/2O2

Etching Reaction

LiF formation

SEI on a-Si with FEC Co-Solvent

100

95

90

85

80

Co

ulo

mb

ic E

ffic

ien

cy

10080604020

Cycle Index

EC/DEC EC/DEC/FEC

4000

3000

2000

1000

0

Sp

ec

ific

Ca

pac

ity

(m

Ah

g-1)

10080604020

Cycle Index

Lithiation DelithiationEC/DECEC/DEC/FEC

(a)

(b)

XPS and TOF-SIMs of a-Si Thin Films with FEC

Schroder et al., Chem. Mater.2015, 27, 5531.

Kinetic Stability Theory of SEI Structure

Peled E., Golodnitsky D. and Ardel G., J. Electrochem. Soc. (1997)

Besenland et al., J. Power Sources (1995)

Aurbach et al. J. Electrochem. Soc. (1994)

Lithium-Ion Batteries: Solid-Electrolyte Interphase 6

is a more porous, or structurally open layer, that suppresses the mass transport

of ions in the electrolyte filling its pores. According to this model, the SEI is

made up of ordered or disordered crystals, which are thermodynamically stable

with respect to lithium.

Figure 1 Schematic presentation of Polyhetero Microphase SEI. Reproduced from [8] by

permission of The Electrochemical Society, Inc.

Later Thevenin and Müller 23

suggested several modifications to the SEI

model: (1) the polymer-electrolyte interphase (PEI) model in which the lithium

in PC electrolyte is covered with a PEI composed of a mixture of Li2CO

3,

P(PO)x and LiClO

4; P(PO)

x is polypropylene oxide, formed by reduction-induced

polymerization of PC; (2) the solid-polymer-layer (SPL) model, where the

surface layer is assumed to consist of solid compounds dispersed in the polymer

electrolyte; (3) the compact-stratified layer (CSL) — in this model the surface

layer is assumed to be made of two sublayers. The first layer on the electrode

surface is the SEI, while the second layer is either SEI or PEI. The first two

High keLow ke

Structure and Composition of SEI

determined by rate:

What about surface?

F(e- )>?

ESEI

0

Desolvation?

SiLixSi

SEIElectrolyte

e- + S productke

Summary SEI on Anodes

Interfacial layers form on anodes due to both spontaneous and

electrochemically driven decomposition processes

SEI on anodes is heavily influenced by solvent, carbon, LiF formation, HF and

LiOx and LiOH

SEI composition on Si influenced by potential, surface chemistry and

environmental exposure

SEI is porous that allows transport of solvated Li ions

SEI is dynamic and has graded composition of Inorganics & Organics

SEI is thick on non-oxide covered anode surfaces

SEI is thick with FEC cosolvent, enriched with LiF on outer surface

Quasireversible shuttle mechanism between LiF and Li2O increase CE

SiOX + xF– → SiFX + (x/2)O2

2LiF(s) 2Li+(sol) + F2 (sol) + 2e-

2Li2O(s) 4Li+(sol) + O2 (sol) + 4e-

SEI library needed to understand parameter space

SLi2O= SPK

43 =

[O]([Li]Li2O+ [Li]LiF )2

43

charge

discharge

Li3V2(PO4)3V2(PO4)3

V4.5+2(PO4)3 + 3 Li+ + 3 e- Li3V

3+2(PO4)3

Gravimetric Capacity: 197 mAh/g

New High Capacity Li3V2(PO4)3

0 20 40 60 80 100 120 140 160 1802.5

3.0

3.5

4.0

4.5

5.0

x = 3

x = 2.5

x = 2

x = 0x = 1

x = 2

x = 2.5

E (

V v

s. L

i/L

i+)

Capacity (mAh/g)

LixV

2(PO

4)3

x = 3

discharge

C/20 rate (1C = full charge over 1 hr)

3.0-4.8 V vs. Li/Li+

Li3V+3

2(PO4)3 3 Li+ + 3 e- + V+4.52(PO4)3

charge

Electrochemistry of Li3V2(PO4)3

29

Severe Capacity Fade of Li3V2(PO4)3

0 20 40 60 80 100 120 140 160 1802.5

3.0

3.5

4.0

4.5

5.03.0- 4.8 V vs. Li/Li

+

1

10

20

30

40

E (

V v

s. L

i/L

i+)

Capacity (mAh/g)

• Sloping of voltage plateaus

• Increasing overpotential with cycle number

• Rapid drop in capacity with cycle

number

• Initial low coulombic efficiency

indicative of the formation of

passivation film

• (Coulombic efficiency) qc=Qd/Qc

0 5 10 15 20 25 30 35 4060

80

100

120

140

160

180

80

85

90

95

100

105

Cycle Number

% C

oulo

mbic

Eff

icie

ncy

Char

ge

Cap

acit

y (

mA

h/g

)

3.0-4.8 V vs. Li/Li+

SEI Compositions (Cycled to 4.8 V)

1 cycle

5 cycles

10 cycles

50 cycles

0 20 40 60 80 100

C-C RCO ROCO RCO 3 RCF

2 RCF3 LiF Li-X

Atomic Percentage

Li3V2(PO4)3 Composite

540 535 530 525

O 1s

Inte

nsi

ty

Binding Energy (eV)

C=OC-O

140 135 130

Li xPF y

Li xPO y

F z

P 2p

Inte

nsi

ty

Binding Energy (eV)

60 59 58 57 56 55 54 53 52 51 50

Li 1s

Inte

nsi

ty

Binding Energy (eV)

Li xPO y

F z

Li xPF y

695 690 685 680

F 1s

Inte

nsi

ty

Binding Energy (eV)

CF 2

LiF

Li xPF y

Super P Carbon

295 290 285 280

RCF 2

C 1s

Inte

nsi

ty

Binding Energy (eV)

C=OC-O C-CCF 2

Electrochemical SEI formation on CarbonOne Cycle (3-4.8 V vs Li/Li+)

Spontaneous SEI formation on Carbon

300 295 290 285 280

RCF 2

C 1s

Inte

nsi

ty

Binding Energy (eV)

C-CC-OC=O

CF 2C-C

700 695 690 685

LiFLi xPF y

Li xPO y

F z

RCF 2CF 2

F 1s

Inte

nsi

ty

Binding Energy (eV)

545 540 535 530

O 1s

Inte

nsi

ty

Binding Energy (eV)

C=OC-O

70 65 60 55

Li 1s

Inte

nsi

ty

Binding Energy (eV)

Li xPO y

F z

LiFLi xP y

F z

Super P Carbon soaked in electrolyte

Spill-over Mechanism for SEI formation

on NMC Cathodes

Dynamic behavior of cathode interphases

driven by conductive carbon. The cathode-

electrolyte interphase, initially formed on

carbon with no electrochemical bias applied,

readily passivates the cathode particles

through mutual exchange of surface species

SEI on cathode: alkoxides, ethers, esters, lithium carboxylates,

carbonate, difluoroalkanes, alkyl lithium, lithium salts (at both 4.2 &

4.8 V vs. Li/Li+)

Difficult to interpret whether the SEI’s chemical composition is

evolving (quantitatively) with increasing cycle number

Carbon additive is responsible for SEI formed spontaneously and

electrochemically on composite LVP cathodes

O in PO4 has a lower basicity or nucleophilicity as compared to

LixMOy cathodes and do not form SEI spontaneously as has been

proposed for lithium metal oxides

LiyMOx + ROCO2R’ → Liy-1MOxR + R’OCO2Li

Summary SEI on LVP Composite Electrodes

Superconcentrated Electrolytes

• high ionic conductivity

• protects Al current collector

• non-viscous

• forms stable SEI due to EC

What do concentrated electrolytes offer?

• higher oxidative/reductive stability

• lower vapor pressure

• thermal stability

• good SEI without EC (?)

• low flammability

• fast electrode reactions (?)

Highly concentrated electrolyte: anything more concentrated than

standard electrolyte: 1 M LiPF6 in EC/DMC (DEC, EMC)

• lower ionic conductivity

• higher viscosity

• high cost

Disadvantages

Superconcentrated Electrolytes: Hypothesis?

Highly concentrated electrolyte solutions:

enhanced ionic association; no free solvent molecules →

change in solvent physicochemical properties

• Suppress active material dissolution (LiMn2O4)

• Better CEI and SEI chemistry – enhanced stability of

electrode/electrolyte interface

• Higher potentials for solvent and electrolyte oxidation

• Lower potentials for solvent and electrolyte reduction

Y. Yamada et al/J. Am. Chem. Soc. 2014, 136, 5039−5046

Reactivity of lithium metal foil and LiTFSI/AN solutions

Cyclic Voltammetry to measure ks and Dapp

Simple Butler-Volmer formalism

0.0 0.1 0.2 0.3 0.4 0.5 0.6

3.9

4.0

4.1

4.2

4.3

E, V

x in Li1-x

CoO2

3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2-600

-300

0

300

600

900

I/mA

E/V

LiCoO2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0

20

40

60

80

100

120

140

160

180

Model: LogNormal

y0 0 ±0

xc 1.00048 ±0.05301

w 0.4795 ±0.0478

A 170.02262 ±14.63953

Co

un

t

d, mm

non-Frumkin

isotherm

3.6 3.8 4.0 4.2 4.4

-2000

-1500

-1000

-500

0

500

1000

1500

2000

I/mA

E/V

LiMn2O

4

0.0 0.2 0.4 0.6 0.8 1.0

3.8

3.9

4.0

4.1

4.2

4.3

E, V

x in Li1-x

Mn2O

4

single value of Deff

and apparent ks

Frumkin-type

isotherm

V. Nikitina et al MSU

Highly Concentrated EC/DEC Solutions: LiMn2O4

3.6 3.8 4.0 4.2 4.4

-200

-100

0

100

200

I, m

A

E, V (Li+/Li)

1 m LiTFSI

3.6 3.8 4.0 4.2 4.4

-200

-100

0

100

200

E, V (Li+/Li)

3 m LiTFSI

3.6 3.8 4.0 4.2 4.4

-200

-100

0

100

200

E, V (Li+/Li)

5 m LiTFSI

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

-Im

Z,

Oh

m

ReZ, Ohm

1 m LiTFSI

3 m LiTFSI

5 m LiTFSI

I redox

2:111:1

4:1

• At higher concentrations Mn

dissolution is suppressed –

decrease in Rct

• For concentrations > 4 M

sharp increase in Rct: resistive

F-containing SEI forms

V. Nikitina et al MSU

1 2 3 4 5

1x10-8

2x10-8

3x10-8

4x10-8

5x10-8

6x10-8

7x10-8

Deff , c

m2/sk

s, cm

/s

m, mol/kg

ks I redox

ks II redox

LMO EC/DEC

2x10-12

4x10-12

6x10-12

8x10-12

1x10-11

Deff

I

Deff

II

1 2 3 4 5100

200

300

400

500

600

RC

EI +

Rct

m, mol/kg

I redox

II redox

LMO EC/DEC

0 100 200 300 400 500 600 7000

100

200

300

400

500

600

700

-Im

Z, O

hm

ReZ, Ohm

RCEIRct

• From 1 M to 3 M:

slight increase in ks and D

• From 3 M to 5 M:

drop in ks and D (0.5 order of

magnitude)

• Impossible to separate RCEI

and Rct unambiguously

39V. Nikitina et al MSU

LiTFSI in EC/DEC

Free EC

Free EC disappears with the increase in salt concentration

Cycling Stability and Rate Capability

3.8 4.0 4.2 4.4-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

cycles 24-25

cycles 13-14

I, m

A

E, V

1 M LiTFSIcycles 1-4

3.8 4.0 4.2 4.4

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

I, m

A

E, V

3 m LiTFSIcycles 1-4

cycles 13-14

cycles 24-25

0 20 40 60 80 100 120 140

3.0

3.3

3.6

3.9

4.2

4.5

E, V

C, mAh/g

C/5

1C

2C

5C

3 m LiTFSI

0 20 40 60 80 100 120 140

3.0

3.5

4.0

4.5

2C

E, V

C, mAh/g

C/5

1C

5 m LiTFSI

41

Overall SummaryNew materials require development of advanced tools for study

Ex and in situ spectroelectrochemical studies

Specialized Transfer Capsule for “Anoxic” Surface Analysis

Raman is an excellent technique for characterizing energy storage materials,

composites and surface chemistry

Enables assessment of phase purity & compositions

Enables study of Li+ charge transfer reactivity at interfaces and

elucidation of charge storage mechanisms

Nano-sized architechures show promise as advanced energy storage materials

Yet are not thermodynamically stable and have reactive surface chemistry

Can achieve high capacities with enhanced kinetics (rate capability)

Interfacial layers form on both cathodes and anodes due to both spontaneous

and electrochemically driven decomposition processes

V and Mn based cathodes are reactive to solvent and HF and form dynamic

SEI layers

SEI composition on Si influenced by potential, surface chemistry and

environmental exposure

SEI library needed to understand parameter space

Center for Electrochemical Energy

Контактная информация:Сколковский институт науки и технологий

Ул. Нобеля, д. 3,Москва, Россия, 143026

E-mail: [email protected] Page: http://faculty.skoltech.ru/Faculty/Keith-Stevenson

http://crei/skoltech/cee

Кейт Дж. Стевенсон,

профессор & директор