HW1_p71-3- 7-14 (Deadline_30-1 Erwin Kreyszig)

2
 MATH 4010 (2014-15) F unctional Analysis CUHK Suggested Solution to Homework 1 Yu Mei P70, 3.  In   , let  Y  be the subset of all sequences with only nite ly many nonze ro terms. Sho w that Y  is a subspace of   but not a closed subspace. Proof. (1) Let  x =  {ξ  j }, y  =  {η  j }  be any two elements in  Y    . Then there exist  N  ∈ N + such that ξ  j  = η  j  = 0,   j   N, otherwise  x, y  has innitely many nonzer o terms . Moreo ver , for any j ,  |ξ  j |  C x  and  |η  j |  C y  for some nonnegetive constants C x ,C y  since  x, y ∈   . Hence, for any  α, β  ∈ R, αξ  j  + βη  j  = 0 ,   j   N ;  |αξ  j  + βη  j | |α|C x  + |β |C y ,   j  ∈ N + , which implies that αx + βy  ∈  Y .  So, Y is a subspace of   . (2) Y is not a close d subspace. F or example , let x n  be a sequence such that x (n)  j  = 1/j, j   n, 0, j > n. i.e.  x n  ==  {1, ···,  1 n , 0, ···}. It is clear that  x n  ∈  Y  . Set  x  be a sequence in   such that  x  j  =  1  j . Thus, x n  − x  =  1 n + 1  → 0, as n → +. But  x /  Y  since it has innitely many nonzero terms.   P71, 7.  Show that convergence of   y 1 + y 2 + y 3 + ···  may not imply convergence of  y 1  + y 2  + y 3  + ···. Proof.  Consider  Y  in the above problem. Set  y n  =  {η (n)  j  }  Y  to be a sequence with η (n) n  = 1/n 2 , η (n)  j  = 0, for all j   = n. Then, for any  n  ∈ N + ,  y n  = 1/n 2 which implies that n=1 y n  = n=1  1/n 2 < +. Set  y  =  {1, 1/2 2 , ···, 1/n 2 , ···}. Then, n  j =1 y  j  − y  =  1 (n + 1) 2   0, as n → +. But y  has innitely many nonzero terms, i.e.   n=1  y n /  Y .  So, n=1  y n  does not converge in Y  .   P71, 14,  Let  Y  be a closed subspace of a normed space (X, · ). Show that a norm  · 0  on  X/ Y  is dened by ˆ x 0  = inf xˆ x x where ˆ x ∈  X/ Y  , that is, ˆ x  is any coset of  Y  . Proof.  Recall that  X/ Y  = { ˆ x| ˆ x =  x + Y , x ∈  X }  and algebraic operations in X/Y  are dened as: αˆ x =  αx + Y  ; ˆ x + ˆ z  =  x + z + Y.  Email address: [email protected]. (Any questions are welcome!) 1

description

Funtional Analysis

Transcript of HW1_p71-3- 7-14 (Deadline_30-1 Erwin Kreyszig)

  • MATH 4010 (2014-15) Functional Analysis CUHK

    Suggested Solution to Homework 1

    Yu Mei

    P70, 3. In `, let Y be the subset of all sequences with only finitely many nonzero terms. Show that Y is asubspace of ` but not a closed subspace.

    Proof.

    (1) Let x = {j}, y = {j} be any two elements in Y `. Then there exist N N+ such thatj = j = 0, j N,

    otherwise x, y has infinitely many nonzero terms. Moreover, for any j, |j | Cx and |j | Cy for somenonnegetive constants Cx, Cy since x, y `. Hence, for any , R,

    j + j = 0, j N ; |j + j | ||Cx + ||Cy, j N+,which implies that x+ y Y. So, Y is a subspace of `.

    (2) Y is not a closed subspace. For example, let xn be a sequence such that

    x(n)j =

    {1/j, j n,0, j > n.

    i.e. xn == {1, , 1n , 0, }. It is clear that xn Y . Set x be a sequence in ` such that xj = 1j . Thus,

    xn x` = 1n+ 1

    0, as n +.

    But x / Y since it has infinitely many nonzero terms.

    P71, 7. Show that convergence of y1+ y2+ y3+ may not imply convergence of y1 + y2 + y3 + .Proof. Consider Y in the above problem. Set yn = {(n)j } Y to be a sequence with

    (n)n = 1/n2,

    (n)j = 0, for all j 6= n.

    Then, for any n N+, yn = 1/n2 which implies that

    n=1 yn =

    n=1 1/n2 < +.

    Set y = {1, 1/22, , 1/n2, }. Then,

    nj=1

    yj y` = 1(n+ 1)2

    0, as n +.

    But y has infinitely many nonzero terms, i.e.

    n=1 yn / Y. So,

    n=1 yn does not converge in Y .

    P71, 14, Let Y be a closed subspace of a normed space (X, ). Show that a norm 0 on X/Y is definedby

    x0 = infxxx

    where x X/Y , that is, x is any coset of Y .Proof. Recall that X/Y = {x|x = x+ Y, x X} and algebraic operations in X/Y are defined as:

    x = x+ Y ; x+ z = x+ z + Y.

    Email address: [email protected]. (Any questions are welcome!)

    1

  • MATH 4010 (2014-15) Functional Analysis CUHK

    (1) x0 = infxxx = inf

    yYx+ y 0, since is a norm on X.

    (2) On the one hand, 0 = Y yields that

    00 = infyYy = 0 = 0.

    On the other hand, if x0 = 0, then

    infyYx+ y = inf

    yYx y = 0

    which implies x Y . Since Y is a closed subspace, then Y = Y . Thus, x Y so that x = 0.Hence x0 = 0 if and only if x = 0

    (3) If = 0, then x0 = infyY0x+ y = 0. For any R {0}, it holds that

    x0 = infyYx+ y = inf

    yY(x+ y

    ) = || inf

    yYx+ y

    = || inf

    yYx+ y = ||x0,

    since Y is a subspace which yields that infyYx+ y = infyY x+ y.

    (4) For any x, z X/Y , by the definition of infimum, for any > 0, there exist y1, y2 Y such that

    x+ y1 x0 + , z + y2 z0 + .

    Thus,x+ z + y1 + y2 x+ y1+ z + y2 x0 + z0 + 2.

    which implies thatx+ z0 = inf

    yYx+ z + y x0 + z0 + 2.

    Since is arbitrary, it holds thatx+ z0 x0 + z0.

    2