Hertzian Dipole - Auburn Universitymikeb/Antennas/Antennas-p-2.pdf · 1 Antennas • Hertzian...

4
1 Antennas • Hertzian Dipole – Current Density – Vector Magnetic Potential – Electric and Magnetic Fields – Antenna Characteristics Hertzian Dipole Let us consider a short line of current placed along the z-axis. do ds j R s I S e β = z J a ( ) i(t) cos o I t ω α = + j o s I Ie α = The stored charge at the ends resembles an electric dipole, and the short line of oscillating current is then referred to as a Hertzian Dipole. Where the phasor The current density at the origin seen by the observation point is A differential volume of this current element is d dv Sdz = do ds d j R s dv I dz e β = z J a Step 1: Current Density

Transcript of Hertzian Dipole - Auburn Universitymikeb/Antennas/Antennas-p-2.pdf · 1 Antennas • Hertzian...

Page 1: Hertzian Dipole - Auburn Universitymikeb/Antennas/Antennas-p-2.pdf · 1 Antennas • Hertzian Dipole – Current Density – Vector Magnetic Potential – Electric and Magnetic Fields

1

Antennas

• Hertzian Dipole– Current Density– Vector Magnetic Potential– Electric and Magnetic Fields– Antenna Characteristics

Hertzian Dipole

Let us consider a short line of current placed along the z-axis.

dods

j RsIS

e β−= zJ a

( )i(t) cosoI tω α= +j

o sI I e α=

The stored charge at the ends resembles an electric dipole, and the short line of oscillating current is then referred to as a Hertzian Dipole.

Where the phasor

The current density at the origin seen by the observation point is

A differential volume of this current element is

ddv Sdz=

dods d

j Rsdv I dze β−= zJ a

Step 1: Current Density

Page 2: Hertzian Dipole - Auburn Universitymikeb/Antennas/Antennas-p-2.pdf · 1 Antennas • Hertzian Dipole – Current Density – Vector Magnetic Potential – Electric and Magnetic Fields

2

Hertzian DipoleStep 2: Vector Magnetic Potential

2

24

doj Ro

osdo

sI dz eR

βµπ

= ∫ zaA

l

l

The vector magnetic potential equation is

A key assumption for the Hertzian dipole is that it is very short so

doR r≅

4

j ro

ossI e

r

βµπ

= zA al rcos sin θθ θ= −za a a

The unit vector az can be converted to its equivalent direction in spherical coordinates using

the transformation equations in Appendix B.

( )rcos sin4

j ro

ossI e

r

β

θ

µθ θ

π

= −A a al

This is the retarded vector magnetic potential at the observation point resulting from the Hertzian dipole element oriented in the +az direction at the origin.

Hertzian DipoleStep 3: Electric and Magnetic Fields

The magnetic field is given by

o os s= ∇×B A

1sin

4

j r

ossI e

jr r

β

φβ θπ

= +⎛ ⎞⎜ ⎟⎝ ⎠

H al

( )1oo o

ss s

o oµ µ= ∇×

BH A=

( )

2

2 sin 4

1j r

ossI e j

r r

β

φ

βθ

π β β

=⎡ ⎤

+⎢ ⎥⎢ ⎥⎣ ⎦

H al

It is useful to group β and r together

2r

λπ

sin 4

j r

ossI e

jr

β

φ

βθ

π

=H al

( )2

1 1r rβ β

Far-field condition:

In the far-field, we can neglect the second term.

.os o osη= − ×rE a H

The electric field is given by

sin .4

j r

os osI e

jr

β

θ

βη θ

π

=E al

Page 3: Hertzian Dipole - Auburn Universitymikeb/Antennas/Antennas-p-2.pdf · 1 Antennas • Hertzian Dipole – Current Density – Vector Magnetic Potential – Electric and Magnetic Fields

3

( ) *1, , Re

2 o os sr θ φ = ×⎡ ⎤⎣ ⎦P E H

Hertzian DipoleStep 4: Antenna Parameters

( )2 2 2

2r2 2

, sin32

oo Ir

rη β

θ θπ

=⎛ ⎞⎜ ⎟⎝ ⎠

P al

2 2 2

max 2 232oo I

Pr

η βπ

=l

2 2sin sin sin d dp dθ θ θ θ φΩ = Ω =∫ ∫ ∫ ∫

Antenna Pattern Solid Angle:

83p

πΩ =

max4

1.5p

= =Ω

Power Density:

Directivity:

Maximum Power Density:

22 2 22 2 2

2 240

32o o

rad P o

IP r I

rη β

ππ λ

= Ω =⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

l l

2280radR π

λ= ⎛ ⎞

⎜ ⎟⎝ ⎠l

Total Radiated Power and Radiation Resistance :

Hertzian DipoleStep 4: Antenna Parameters

The total power radiated by a Hertzian dipole can be calculated by

2maxrad pP r P= Ω

2rad o radP I R=

The power radiated by the antenna is

Circuit AnalysisField Analysis

Page 4: Hertzian Dipole - Auburn Universitymikeb/Antennas/Antennas-p-2.pdf · 1 Antennas • Hertzian Dipole – Current Density – Vector Magnetic Potential – Electric and Magnetic Fields

4

Example

Electric Field:

Power density:

Maximum Power density:

Hertzian Dipole - Example

Normalized Power density

Example

Antenna Pattern Solid Angle:

Radiated Power:

Radiated Resistance:

( ) 3 2sin d d sin cos d d,p nP dθ θ φ θ φ θ φθ φΩ = Ω =∫ ∫ ∫ ∫( )( )3 2sin d cos dp θ θ φ φΩ = ∫ ∫