guiding and bending light at will with Spatial Solitons in liquid...

23
Nematicons Nematicons : : guiding and bending light at will with Spatial Solitons in liquid crystals

Transcript of guiding and bending light at will with Spatial Solitons in liquid...

  • NematiconsNematicons::

    guiding and bending light at will with

    Spatial Solitons in liquid crystals

  • NematiconsNematicons and all-optical waveguides– non local spatial solitons

    Conclusions

    – soliton and their angular steering– positive and negative refraction

    at an interface

    – total internal reflection

  • Self-focusing and spatial solitons

    When Δdiff + Δf =0, diffraction is balanced by self-focusing.

    The resulting index distribution is a waveguide able to confine the field: self-trapping and spatial solitons

    Linear diffraction

    r

    λ

    Δdiff

    a k

    Self-focusing: n=n0 +n2 I

    r

    a

    Δf

    λ

    k

  • Nematic liquid crystals: reorientational response

    Field E forces the reorientation of n

    ~3 nm

    ~0.5 nm

    isotropic phase

    //n

    ⊥n

    n

    nematic phase

    planar alignment

    n

    pre-tilted

    field-induceddirector reorientation

  • -- In the presence of a pre-tilt, in a positive uniaxial NLC:

    onnn => ⊥//

    ( )2

    ||

    2

    2

    2 sincos1

    nn

    neθθ

    θ+

    =

    Optical Reorientation and Nematicons

    Appl. Phys. Lett. 77, 7 (2000)z[mm]

    y[μm]

    0 0.5 1

    0

    100

    -100

    x

    n(x)

    E(x)

    50 μmY

    X

    Diffraction

    P=2mW

    Self-confinement

  • Laser Ar+

    Laser He-Ne

    Er

    Ev

    Attenuatory

    xz

    V

    Electrodes

    Anchoring films

    Input beam

    Experimental setup

  • Nematicons, self-trapping and optically induced waveguiding of a co-polarized signal

    Bias: 1V@ 1KHz (r.m.s)

    y[μm

    ]y[

    μm]

    z[mm]

    Pump (2mW, 514nm) Signal (~0.1mW, 633nm)

    Line

    ar(T

    E)So

    liton

    (TM

    )

    0 0.5 1

    0

    100

    -100 0 0.5 1

    0

    100

    -100

    z[mm]

    0 0.5 1

    0

    100

    -100 0 0.5 1

    0

    100

    -100

    z[mm] z[mm]

    Opt. Photon. News 14, 44 (2003); Phys. Rev. Lett. 92, 113902 (2004)

  • Coherent vs. partially incoherent nematiconsBias: 1V@ 1KHz (r.m.s); λ = 514 nm

    y[μm

    ]

    z[μm]

    y[μm

    ]

    z[μm]

    z[μm]z[μm]

    Incoherent (2.7mW)

    Line

    ar(T

    E)So

    liton

    (TM

    )

    Phys. . Rev. . E 65, R035603 (2002)

    Coherent (2mW)

  • Nematicon steering via interactions

    in-plane w/ other nematicons

    or external beamsV

    NLC

    Opt. Lett. 27, 1460 (2002)

    Appl. Phys. Lett. 81, 3335 (2002)

    J. Nonl. Opt. Phys. & Mat. 16, 37 (2007)

    APL 87, 261104 (2005)

    Photon.Tech.Lett. 18, 1287 (2006)

    out-of-plane spiraling of cluster

    Phys.Rev. A 75, 63835 (2007); Opt. Lett 32, 1447 (2007)

  • A

    BOut

    z

    y

    - 50

    500

    -50

    500

    0 0.5 1

    y[μm

    ]

    z[mm]

    BA ⋅

    BA ⋅

    (a)

    (b)

    -100-50

    0 50 100y[μm]

    11(c)

    Inte

    nsity

    (a.u

    )

    0

    1

    A

    BOut

    z

    y

    - 50

    500

    -50

    500

    0 0.5 1

    y[μm

    ]

    z[mm]

    BA ⋅

    BA ⋅

    (a)

    (b)

    A

    BOut

    z

    y

    - 50

    500

    - 50

    500

    -50

    500

    -50

    500

    0 0.5 1

    y[μm

    ]

    z[mm]

    BA ⋅

    BA ⋅

    (a)

    (b)

    -100-50

    0 50 100y[μm]

    11(c)

    Inte

    nsity

    (a.u

    )

    0

    1

    -100-50

    0 50 100y[μm]

    11(c)

    Inte

    nsity

    (a.u

    )

    0

    1

    -50

    500

    -50

    500

    0 0.5 1

    y[μm

    ]

    z[mm]

    A

    B

    1Sz

    y

    2S(a)

    (b)

    Inte

    nsity

    ( a.u

    )

    -100 -50 0 50 1000

    1

    y[μm]

    1S 2S

    1S2S(c)

    -50

    500

    -50

    500

    -50

    500

    -50

    500

    0 0.5 1

    y[μm

    ]

    z[mm]

    A

    B

    1Sz

    y

    2S(a)

    (b)

    Inte

    nsity

    ( a.u

    )

    -100 -50 0 50 1000

    1

    y[μm]

    1S 2S

    1S2S(c)

    Y-junction/ AND-gate•Plow =1.7mW, Phi =3mW

    X-junction•Plow =1.7mW, Phi =4.3mW

  • AB

    OutBA ⋅BA ⋅BA ⋅

    -50

    500

    -50

    500

    -50

    500

    -50

    500

    0 0.5 1

    y[μm

    ]

    z[mm]

    (a)

    (b)

    S

    OutBA

    11011000

    0001

    -100 -50 0 50 100y[μm]

    11 01 10 00(c)

    Inte

    nsity

    (a.u

    )

    1

    0

    AB

    OutBA ⋅BA ⋅BA ⋅

    -50

    500

    -50

    500

    -50

    500

    -50

    500

    -50

    500

    -50

    500

    -50

    500

    0 0.5 1

    y[μm

    ]

    z[mm]

    (a)

    (b)

    S

    OutBA

    11011000

    0001

    -100 -50 0 50 100y[μm]

    11 01 10 00(c)

    Inte

    nsity

    (a.u

    )

    1

    0

    A

    BOut

    -50

    500

    -50

    500

    -50

    500

    -50

    500

    0 0.5 1

    y[μm

    ]

    z[mm]

    BA ⋅

    BA ⋅

    OutBA

    11011000

    1001

    (b)

    (a) S

    Inte

    nsity

    (a.u

    )

    -100 -50 0 50 1000

    1

    0110

    00 11

    y[μm]

    (c)

    A

    BOut

    -50

    500

    -50

    500

    -50

    500

    -50

    500

    -50

    500

    -50

    500

    -50

    500

    0 0.5 1

    y[μm

    ]

    z[mm]

    BA ⋅

    BA ⋅

    OutBA

    11011000

    1001

    (b)

    (a) S

    Inte

    nsity

    (a.u

    )

    -100 -50 0 50 1000

    1

    0110

    00 11

    y[μm]

    (c)

    NOR-gatePin =1.7mW

    XNOR-gatePin =1.7mW

    00

    10

    01

    11

    00

    01

    10

    11

  • Apparent walk-off α

    vs bias for various powers

    Bias-controlled steering of Nematicons

    Nature 432, 733 (2004)

  • v1∼

    v2∼

    x

    p

    t

    1

    2

    Nematic Liquid Crystal Cell: interface geometry

    x

    z

    y

    Electrode patterning permits the definition of two tunable dielectric regions, i.e. a voltage-adjustable transition between media differing in orientation and nonlinear response

    n̂ρ

    kI kR

    kT

    ΦI ΦR

    p

    t

    ρ

    1

    2

    n̂ΦR

  • pt

    x

    Reflection and RefractionThe inverse surface of wave normals

    ρρ =90°

    n̂k =kv n(r) r^ ^

    p

    t

    ke =ko = kv n⊥

    kv n⊥

    kv n||

    x

    ko

    ke

  • pt

    x

    Reflection and RefractionThe inverse surface of wave normals

    ρ

    ρ =90° n̂

    p

    t

    o

    e

    x

    ρ =90°ξ= ξ(V)

    n̂p

    t

    x

    ρ

    ξ

    p

    t

    o

    e

    x

    ke = kv neke = kv ne (V)

  • Refraction

    p

    tV2 >0

    V1 =0o1

    o2

    e2

    e1

    Refraction

    kT-e

    kT-okI-e

    n1^p

    t

    x

    ρ

    ξξ1 =ξ(V1 )=0ξ2 =ξ(V2 )>0

    n2^

    kI

    kT

    ΦI

    p

    t

    1

    2n̂ΦR

  • Refraction (ΔV=V1 -V2

  • Refraction is said to be negative when, on passing through an interface between two media, the tangential component of the time- averaged Poynting vector changes its sign, i.e. the incident and refracted rays are on the same side of the surface normal

    SI

    STo, STeOptic axis

    Air

    crystal

    Negative refraction in uniaxials (E. Bartholinus, 1669)

  • Negative and off-plane Refraction at an air-LC interface: bias controlled steering

    t

    Vrms

    0

    2.0V

    z

    y

    x

    Vlow

    Vhigh

    E7 (n|| = 1.6954 n⊥

    = 1.5038 @ λ=1064nm)Pin =3.33mW

    So

    Sekin

    kokeδ

    Opt. Express 15, 8021 (2007)

  • o2

    e2

    Total Internal Reflection

    p

    tV2 =0

    V1 >0

    kI-e

    o1e1

    kR-e

    TIR

    Incident e-Wave

    ξ1 =ξ(V1 )>0n1^

    pt

    x

    ρ

    ξ

    n2^ξ2 =ξ(V2 )=0

    kI kR

    kT

    ΦI ΦR

    p

    t

    1

    2nΦR

    ^

  • Reflection (ΔV=V1 -V2 >0) for ρ =90°: experiments

    22°

    Nature Physics 2, 737 (2006)

  • Conclusions

    - Nematicons: 2D+1 nonlocal spatial solitons and induced waveguides for signal routing

    - Angular steering by external beams, extra nematicons, induced defects, tunable walkoff

    - Normal and negative refraction at an interface: voltage tunable steering and readdressing as large as 18°

    - Total internal reflection at an interface: angular steering by 22°

    Slide Number 1Slide Number 2Slide Number 3Slide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19Slide Number 20Slide Number 21Slide Number 22Slide Number 23