Geant4 simulations for microdosimetry at the cellular level...

27
1 / 27 Centre d’Etudes Nucléaires de Bordeaux - Gradignan Geant4 simulations for microdosimetry at the cellular level and nanobeam design Sébastien Incerti on behalf of the Physics Biology group Centre d'Etudes Nucléaires de Bordeaux - Gradignan IN2P3/CNRS Université Bordeaux 1 33175 Gradignan France Geant4 2005 November 3 rd -10 th , 2005

Transcript of Geant4 simulations for microdosimetry at the cellular level...

Page 1: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

1 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Geant4 simulations for microdosimetry at the cellular leveland nanobeam design

Sébastien Incerti

on behalf of the Physics Biology group

Centre d'Etudes Nucléaires de Bordeaux - GradignanIN2P3/CNRSUniversité Bordeaux 133175 Gradignan France

Geant4 2005 November 3 rd-10th, 2005

Page 2: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

2 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Philippe MORETTOProfessor

Bordeaux 1 University

Claire HABCHITeaching Assistant

Bordeaux 1 University

Duy Thuy NGUYENGraduate student

Ministère des Affaires Etrangères(France)

Consequences ofenvironmental stress at the

biological tissue and cell scales

Consequences ofenvironmental stress at the

biological tissue and cell scales

3D microtomographyLow dose irradiation &

cellular response

Hervé SEZNECResearch AssociateCNRS/IN2P3/SDV

Thomas POUTHIERGraduate student

BDI CNRS/COGEMA

The CENBG Physics Biology group in October 2005

Sébastien INCERTIResearch Associate

CNRS/IN2P3

Simulations(microdosimetry & ray tracing)

Qianmei ZHANGPost-doc fellow

Bordeaux 1 University

Two facilities @ CENBG on a state-of-the-art low energy Singletron electrostatic accelerator (p, d, αααα up to 3.5 MeV)

• a microbeam line (resolution in vacuum < 1 µm) for- bio-sample analysis through Scanning Transmission Ion Microscopy, Particle Induced X-ray Emission & Rutherford Back Scattering- targeted cellular irradiation in single ion mode

• an upcoming nanobeam line (~2006) mainly for analysis with a resolution in vacuum of about 50 nm

Page 3: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

3 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Geant4Geant4

Looking for a simulation tool able to perform…

• True ray-tracing

• ion transport in focusing quadrupoles to characterize the microbeam lineperformances and predict / adjust the nanobeam line focusing capabilities

• understand and reduce scattering along the line : collimator edges, diaphragms, pipe residual air…

• understand and reduce scattering inside the cellular irradiation chamber : ion detector, extraction window, culture foil where cells attach…

• Microdosimetry and cell damage

• estimate the absorbed dose in single ion irradiation mode

• model DNA damage and survival at the cell level

• compare with other irradiation techniques (alpha emitters, macro beam)

Why Monte Carlo simulation ?

Page 4: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

4 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Ray-tracing at the sub-micron scale

Page 5: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

5 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Field models for the nanobeam line quadrupole magne ts

• Map recently computed with VF Opera 3D• mesh :

• 14 x 14 x 240 mm3

• 27225 nodes

Simple quadrupole fieldmodel like in class

G4QuadrupoleMagFieldBx = y G and By = x G

3D quadrupole field mapfrom Opera 3D

&3D linear interpolation fromadvanced Purging Magnet

code

-6.2445269.86678616.50520-11.97863Simple field model

-6.23987589.899072616.7577-12.14923D map field

G4 (T/m)G3 (T/m)G2 (T/m)G1 (T/m)Gradients for 3.5 MeV protons

Gradient computation fully automated with Geant4

Bx or B y vs z B y vs B x Bz vs z

x

y

z

10 cm

Oxford Microbeams Ltd,U.K.

Page 6: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

6 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

4565

90°

250

3150

5000

100

40

100

40

11°

300

X400 400

90° analysismagnet

Switchingmagnet

Image plan

Object collimator Diaphragm Diaphragm

Nanobeam line ray-tracing

5 µm diameterobject collimator

Intermediate image size200 nm x 900 nm

1727 V & 2916 V

With electrostatic deflection

Without electrostatic deflection

60 nm x 80 nm

Beam maximum external envelope

DOUBLET TRIPLET

Electrostatic plates

Sin

glet

ron

inci

dent

bea

m

Page 7: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

7 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Comparison in high (PIXE) and low flux (STIM) modes

90 nm x 50 nm300 nm x 200 nm

• Nice agreement between TRAX and Geant4 (square field model, no map)• Sharp STIM image, distorted PIXE image (chromatic and spherical aberrations)• Compatible with probe size requirements• Pure vacuum, no collimators

Geant4 versus TRAX (reference)

Page 8: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

8 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

x

Beam axis

y

QObject plane (0)

Image plane (i)

An : aberration coefficient of order j + k + l written

Example : < x | θΦ2 >

θ δ= Φ0 0 0 0( , , , , , )

ix f x y Parasitic

θ δ= Φ0 0 0 0( , , , , , )

iy g x y Parasitic

ν ν ν=1 2 3

j k l

nA x

θ= Φcos sinx

= Φsiny

θ= Φcos cosz

Beam optics

θ ν ν ν= + + + + + +0 1 0 2 0 3 0 1 2 3

... ...j k l

nix A Ax A y A A

/ /2P P E Eδ = ∆ = ∆

Page 9: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

9 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

RAY TRACING

MATRIX+

RAY TRACING

List of quadrupole dominant aberration coefficients

Order and Type Coefficients Remarks

1st INTRINSIC < x | x > = 1/Dx Horizontal demagnification< y | y > = 1/Dy Vertical demagnification< x | θ > Horizontal astigmatism (zero for correctly focused image)< y | Φ > Vertical astigmatism (zero for correctly focused image)

1st PARASITIC < x | Un > Horizontal translation of quadrupole n< y | Vn > Vertical translation of quadrupole n< x | αn > Tilt in xz plane of quadrupole n< y | βn > Tilt in yz plane of quadrupole n

2nd INTRINSIC < x | θδ > Chromatic aberration (δ = ∆P/P)< y | Φδ > Chromatic aberration< x | xδ > little effect (small object size)< y | yδ > little effect (small object size)

2nd PARASITIC < x | Φρn > Rotation of quadrupole n about optical axis (x and y planes coupled)< y | θρn > Rotation of quadrupole n about optical axis (x and y planes coupled)< x | θεn > Excitation changes (power supply ripple, ε is % change in excitation)< y | Φεn > Excitation changes (power supply ripple, ε is % change in excitation)

3rd INTRINSIC < x | θ3 > Spherical or aperture aberration< y | Φ3 > Spherical or aperture aberration< x | θΦ2 > Spherical or aperture aberration< y | Φθ2 > Spherical or aperture aberration

5th INTRINSIC < x | θ5 > Negligible in current systems< y | Φ5 > Only after spherical aberration has been corrected using octupoles

G. W. Grime and F. Watt, Beam Optics of Quadrupole Probe-Forming Systems, Adam Hilger Ltd., Bristol (1983)

Page 10: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

10 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Geant4 ray tracing capabilities

• Calculation up to any order for TRAX (ray-tracing reference code in the microbeamcommunity) and Geant4 , up to order three with Zgoubi (second reference code)

• N = 32 rays generated from a point source to reach order 3 in θ, Φ and order 1 in δ

• 32 coefficients An

extracted from matrix inversion of the 32 ray positions on target

= + + +(3 1)(3 1)(1 1)N-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1.5 -1 -0.5 0 0.5 1 1.5

X (µm)

Y (µm)

TRAX GEANT4 Zgoubi

Page 11: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

11 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

(1) using TRAX’s gradients(2) using GEANT4’s gradients

units are µm, mrad and %

Quantitative predictions : intrinsic aberration coe fficients

xD x x=

x θ

x θδ

2x θφ

3x θ

yD y y=

y φ

y φδ

2y θ φ

3y φ

Intrinsic aberration coefficients

Geant4 square (1) Geant4 square (2)

6.356E+01 6.3558E+01

5.3677E-01 -4.9865E-02

-2.0331E+03 -2.0328E+03

3.5625E+02 3.597E+02

3.0893E+03 3.0913E+03

9.9411E+01 9.9413E+01

1.2357E-01 8.9776E-02

-3.7019E+02 -3.7018E+02

2.2980E+02 2.2916E+02

1.4939E+02 1.4856E+02

TRAX

6.3557E+01

-3.4937E-01

-2.0354E+03

3.5789E+02

3.0893E+03

9.9409E+01

-3.6262E-02

-3.6979E+02

2.2920E+02

1.4896E+02

Geant4 3D MAP

6.36174+01

-2.05255E+03

-1.50558E+03

-5.4201E+04

9.87808E+01

-1.59662E+01

-3.6385E+02

1.39732E+04

-8.81738E+02

-1.04303E+02

Next tasks

• increase field map granularity around paraxial region and investigate spherical terms dominance & parasitic• compare with Enge ’s fringing field model• use nanobeam line simulation for fine alignment (grid-shadow techniques)• investigate effect of multiple scattering in very low pressure residual air (Geant4 VS experiment)

3D map : spherical terms dominant

Page 12: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

12 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Microdosimetry at the cellular scale

Page 13: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

13 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

3.50.1

0.3

Object collimatorØ=5 µm

(platinum)

DiaphragmØ=10 µm(platinum)

Magnetic volume :4 quadrupoles with fringing field

CollimatorØ=10 µm(platinum)

Gas detector

(isobutane)

Exit window(Si3N4)

Ambient air

Culture foil (polypropylene)

Cells in KGM (water)

Microscope slide(glass)

5374.93 569.965 830 176.326

1.5e-4

4e-3

3

0.07

Alphabeam

Beam pipe(aluminium)

Beam pipe(aluminium)

Beam pipe(aluminium)

0.07 0.07

Alphabeam

from 0.9e-3 to 6e-3

Ambientair

Culture layer (Mylar)

Cells in growingmedium (water)

40

500e-3

Alpha source

16

Alphas

CENBG Focused Microbeam

CEA/SP2A Macrobeam

CEA/SP2A Electrodeposited sources238/239 Pu

Cellular irradiation setups

6

Extraction window(Havar )

Ambient air

Culture layer (Mylar )

Cells in growingmedium (water )

3.5e -35e-3

5e-3

Alphabeam

Gold foil

6865

Beam pipe (vacuum)

36

Extraction window(Havar )

Extraction window(Havar )

Ambient airAmbient air

Culture layer (Mylar )

Culture layer (Mylar )

Cells in growingmedium (water )

3.5e -35e-3

5e-3

Alphabeam

Gold foil

6865

Beam pipe (vacuum)

3

• 100 000 cells / 1.54 cm 2

• Nuclei distant of at least 20 µm from each other• No overlap

Cell layer in growing medium

12.5

14

20

10

2072

22

Alphabeam

12.5

14

20

10

2072

22

Alphabeam

Alphabeam

Cytoplasm

Nucleus

FRONT VIEW TRANSVERSE VIEW

Alpha beam

Alphabeam

Cytoplasm

Nucleus

FRONT VIEW TRANSVERSE VIEW

Alpha beam

Two « reasonable » cell geometries

Page 14: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

14 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Percentage of hit nucleiwithin the ellipsoid cell population irradiated with the Pu alpha emitter through a mylar thickness of 0.9 µm for an irradiation time of 5 min 12 s (plain circles), 10 min 24 s (plain triangles) and 15 min 36 s (plain squares). The corresponding Poisson fitsare shown. The mean for an irradiation time of 5 min 12 s (dashed line) reaches 0.5 alpha per nucleus and is proportional to the irradiation duration (dot line for 10 min 24 s and mean of 1.0 alpha per nucleus ; dot-dashed line for 15 min 36 s and mean of 1.5 alpha per nucleus ).

0.5 αααα/nucleus, 5 min 12 s

1 αααα/nucleus, 10 min 24 s

1.5 αααα/nucleus, 15 min 36 s

Percentage of hit nucleiwithin the parallelepiped cell population irradiated with the CEA/DPTA 9.3 MeV alpha macrobeam. The plain circles represent Geant4 predictions and the dashed curve shows the corresponding Poisson fit , with a mean equal to one . The plain triangles and the dotted curve correspond to a Poisson distribution of mean 2. For illustration, the other plain curves show Poisson fits for means ranging respectively from 3 to 10

Hits and absorbed dose distributions

Absorbed dose distributionwithin an elliptic nucleus for 3 MeV incident alphas. The dose reaches 0.4 ± 0.1 Gy / alpha . About 0.5 % of incident alphas crossing the culture foil hit neighbor cells.

CENBG Microbeam

CEA Macrobeam CEA Elec. Sources

Page 15: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

15 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

HaCat nucleus confocal imaging after irradiation

After irradiation with 5 alphas (3MeV) After irradiation with 50 alphas (3 MeV)

H2B-GFP(DNA marker)

γ - H2Ax(dsb marker)

Dedicated keratinocyte cell line expressing the histone H2B-GFP protein and immunofluorescenceusing an antibobody against phosphoryled H2AX histones ( γγγγ-H2AX)

Page 16: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

16 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Next tasks• Resolution increase (256x256 and above) expected for cytoplasm and nucleus• Average nucleus chemical composition will be measured from STIM, PIXE, RBS @ AIFIRA

• Estimation of the absorbed dose : need for a realistic geometry• Conversion of confocal microscopy images into Geant4 parameterised volumes(G4PVParameterisation) for the cell cytoplasm and the cell nucleus

Geant4 nucleus model4015 voxels

(0.396 x 0.396 x 0.611 µm3 each)

Stack of 2D confocal images of nucleus marked withH2B-GFP (size 64x64)

3D reconstruction of confocal

images

Ellipsoid cytoplasm (KamLAND)(not marked yet)

Realistic cellular geometries

VC++ conversion application• Pixel extraction• RGB noise subtraction • Centering• Voxel local coordinates and intensity

D 0.29 Gy=

3 MeV

incident alphas (103)

Page 17: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

17 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Geant4 DNA

Most advanced simulation tool of radiation damage a t DNA level

Modular structure written by W. Friedland et al. at GSF, Munich (20 years) :

• simulation of cellular nucleus DNA contentGeometry module

• simulation of proton or alpha interactions through the chosen cell geometryTrack structure module

• simulation of secondary electron interactionsTrack structure module

• simulation of damages to DNA (direct hits and OH. radicals)Effect module

• simulation of chemical effects of species (pre-chemical & chemica l)Chemistry module

• extraction of biological damages (ssbs, dsbs, fragments,…)Damage module

PARTRAC simulates processes from the initial irradiation (t = 0) up to t = 10 -6 s.

Repair processes are not simulated yet.

Going beyond “à la PARTRAC”

Page 18: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

18 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

The nucleus geometry in PARTRAC• human fibroblast cell nucleus• 46 chromosomes• 6 Gbp of chromatin• irregular crossed linker structure• atom by atom approach (center coordinates and Van der Waals radius)

R. Friedland et al., RPC 72 (2005) 279-286

about 8 µm

Page 19: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

19 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Geant4-DNASimulation of Interactions of Radiation with Biological

Systems at the Cellular and DNA Level

Based on

Partly funded by

Activity of

R. Capra, S. Chauvie, R. Cherubini, Z. Francis, S. Gerardi, S. Guatelli, G. Guerrieri, S. Incerti, B. Mascialino, G. Montarou, Ph. Moretto, P. Nieminen, M.G. Pia, M. Piergentili, C. Zacharatou

+ biology experts (E. Abbondandolo, G. Frosina, E. Giulotto et al.)

Page 20: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

20 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

• Geant4-based “sister” activity to the Geant4 Low-Energy Electromagnetic Working Group

• Simulation of nano-scale effects of radiation at the cell and DNA level

• Three levels– Macroscopic : calculation of dose, develop useful associated tools

– Cell : cell modelling, processes for cell survival, damage etc– DNA : DNA modelling, physics processes at the eV scale, processes for DNA strand

breaking, repair…

• On-going activities : anthropomorphic phantoms, cell survival models, low energy physics extensions down to the eV scale, etc...

• Key elements

– Rigorous software process– Collaboration with domain experts (biologists, physicians)

– Team including groups with cellular irradiation facilities

Geant4-DNA : programme

Page 21: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

21 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Geant4 DNA Physics processeswill be presented in a few days at the

14th Symposium on microdosimetryVenezia, Italy, 13-18 November 2005

by the Geant4-DNA collaboration

and in a few minutes

see Ziad FRANCIS’ talk

Unpublished

Unpublished -- prelim

inary

preliminary

Page 22: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

22 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

http://www.ge.infn.it/geant4/dna

Page 23: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

23 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Aurora European Programme for the

Exploration of the Solar System

The objective of the AuroraProgramme is first to formulate andthen to implement a European long-term plan for the robotic and humanexploration of solar system bodiesholding promise for traces of life.

Page 24: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

24 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Dose in organs at risk

Geant4 simulation with biological

processes at cellular level (cell survival,

cell damage…)

Phase space input to nano-simulation

Geant4 simulation with physics at eV scale

+DNA processes

OncologicalOncological risk to risk to astronautsastronauts

Risk of nervous Risk of nervous system damagesystem damage

Geant4 simulationspace environment

+spacecraft, shielding etc.

+anthropomorphic phantom

Scenario for AURORA

INFN Genova

Page 25: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

25 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

ICNMTA comparison

Validations of Geant4 for focused micro & nano beams

• Nucl.Instrum.Meth.B231:76-85,2005• IEEE Trans.Nucl.Sci.51:1395-1401,2004• Nucl.Instrum.Meth.B210:92-97,2003

Page 26: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

26 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

http://geant4.in2p3.fr/cenbg/vmware.html

Making Geant4 easily available : VMware

Sc. Linux 3.03

Windows

Page 27: Geant4 simulations for microdosimetry at the cellular level …geant4.in2p3.fr/2005/Workshop/UserSession/S.Incerti.pdf · Geant4 simulations for microdosimetry at the cellular level

27 / 27Centre d’Etudes Nucléaires de Bordeaux - Gradignan

Thank you for your attention !