Galα1&3Gal&BSA - DORAS - DCUdoras.dcu.ie/17816/1/ProLegere_Poster_10-12.pdf · Galα1&3Gal&BSA+...

1
Galα13GalBSA Isola/on of Glycoproteins in an Eppendorf using 50 μL RPLSepharose – elu/on with sugar. Mixture of 3 Proteins (M) (A) Asiaotransferrin – terminal βgalactose. (R) Ribonuclease B – terminal mannose. (G) GFP – unglycosylated. (1) RPLGal1 unbound frac/on (2) Asialotransferrin extracted with RPLGal1 (3) RPLαMan unbound frac/on (4) Ribonuclease B extracted with RPLαMan Galα13GalBSA 1 Irish Separa<on Science Cluster, Na<onal Centre for Sensor Research, Dublin City University, Ireland 2 School of Biotechnology, Dublin City University, Ireland Róisín Thompson 1 , Brendan O’Connor 2 , Michael O’Connell 2 & Paul Clarke 1 Simple Scalable Produc<on of RPLs Introduc<on More than 50% of proteins are glycosylated and glycans are known to mediate a wide range of biological processes. With this knowledge, there has been an explosion of interest in the field of glycoproteomics. There is a need for tools that enable efficient isola/on of glycoproteins from biological samples, where they are usually only present at low levels, to enable their iden/fica/on and analysis. Changes in glycosyla/on paTerns of biomolecules and cells are also associated with many diseases such as cancer and rheumatoid arthri/s. Tools capable of sensi/ve detec/on of such changes would have significant poten/al in the field of diagnos/cs. In addi/on, many biopharmaceu/cals are glycosylated and the glycosyla/on impacts their clinical proper/es. The industry needs tools for sensi/ve product analysis and selec/ve purifica/on of op/mally glycosylated product to meet regulatory requirements and to bring safer, more effec/ve ,products to pa/ents. Recombinant Prokaryo/c Lec/ns (RPL’s) offer new opportuni/es to develop enhanced glycoselec/ve tools for glycoprotein analysis and purifica/on and to overcome the limita/ons that have restricted the applica/ons of plant lec/ns. 1 mL & 5 mL Columns compa/ble with LC systems (A). High RPL densi/es (~20 mg.mL 1 ). High binding capacity (B). RPLGal1: 24 mg .mL 1 asialofetuin ECL: 10 mg.mL 1 asialofetuin Demonstrated reproducibility (C). Simple Isola<on of Glycoproteins Enhanced Proper<es of RPL’s Compared to Commercial Bio<nylated Plant Lec<ns. A. Enhanced Affinity of RPL’s: RPLGal2 shows 3fold higher affinity than parental RPLαGal. RPLMan1 shows 7 fold higher affinity than parental RPL αMan B. Altered Specificity of RPL’s:: RPLGal1 displays strong binding to Galβ14 linked sugars which parental RPLαGal cannot bind. C. Superior Affinity to Plant Lec<ns: RPLGal2 3 fold higher than GSLI B4. RPLGal1 5 fold higher than ECL.. RPLMan1 24 fold higher than GNL. D. Enhanced Detectability over Plant Lec<ns:. Lower concentra/ons of RPL’s required. Significantly higher signal strength (3 fold). A. Binding to Galα13GalBSA. B. Binding to Galβ14GlcNAcBSA. C. Binding to Glucose Oxidase. Frac<ona<on of Glycoprotein Glycoforms Separa/on of asialotransferrin & transferrin using a 1 mL RPLGal1 column. Bound protein eluted with 0.5 M galactose. Conforma/on of separa/on by ELLA: ECL and RPLGal1 only responded to the eluted frac/on (insert). RPLSepharoses: FPLC & HPLC Columns: High level of expression in E. coli (Lane 1). Single step purifica/on via IMAC. High purity product (Lane 4). Scalable Produc/on 1g from 1L culture. Cost effec/ve produc/on of large quan//es 1 2 3 4 (B) (C) AG R M 1 2 3 4 (A)

Transcript of Galα1&3Gal&BSA - DORAS - DCUdoras.dcu.ie/17816/1/ProLegere_Poster_10-12.pdf · Galα1&3Gal&BSA+...

Page 1: Galα1&3Gal&BSA - DORAS - DCUdoras.dcu.ie/17816/1/ProLegere_Poster_10-12.pdf · Galα1&3Gal&BSA+ Isolaon+of+Glycoproteins+in+an+ Eppendorfusing + 50 µL+RPL&Sepharose+–elu/on+with+sugar.+

Galα1-­‐3Gal-­‐BSA  

Isola/on  of  Glycoproteins  in  an  Eppendorf    using      

50  µL  RPL-­‐Sepharose  –  elu/on  with  sugar.    Mixture  of  3  Proteins  (M)  (A)    Asiaotransferrin  –  terminal  β-­‐galactose.    

(R)    Ribonuclease  B  –  terminal  mannose.  

(G)  GFP  –  unglycosylated.  

(1)    RPL-­‐Gal1  unbound  frac/on  (2)    Asialotransferrin  extracted  with  RPL-­‐Gal1  

(3)    RPL-­‐αMan  unbound  frac/on  (4)    Ribonuclease  B  extracted  with  RPL-­‐αMan    

Galα1-­‐3Gal-­‐BSA  

1 I r i s h   S e p a r a < o n   S c i e n c e   C l u s t e r ,   N a < o n a l   C e n t r e   f o r   S e n s o r   R e s e a r c h ,   D u b l i n   C i t y   U n i v e r s i t y ,   I r e l a n d  2 S c h o o l   o f   B i o t e c h n o l o g y ,   D u b l i n   C i t y   U n i v e r s i t y ,   I r e l a n d  

R ó i s í n T h o m p s o n 1 , B r e n d a n O ’ C o n n o r 2 , M i c h a e l O ’ C o n n e l l 2 & P a u l C l a r k e 1

 Simple  Scalable  Produc<on  of  RPLs    

Introduc<on  More  than  50%  of  proteins  are  glycosylated  and  glycans  are  known  to  mediate  a  wide  range  of  biological  processes.  With  this  knowledge,  there  has  been  an  explosion  of  interest  in  the  field  of  glycoproteomics.  There  is  a  need  for  tools  that  enable  efficient    isola/on  of  glycoproteins  from  biological  samples,  where  they  are  usually  only  present  at  low  levels,  to  enable  their  iden/fica/on  and  analysis.  Changes  in  glycosyla/on  paTerns  of  biomolecules  and  cells  are  also  associated  with  many  diseases  such  as  cancer  and  rheumatoid  arthri/s.  Tools  capable  of  sensi/ve  detec/on  of  such  changes  would  have  significant  poten/al  in  the  field  of  diagnos/cs.  In  addi/on,  many  biopharmaceu/cals  are  glycosylated  and  the  glycosyla/on  impacts  their  clinical  proper/es.  The  industry  needs  tools    for  sensi/ve    product  analysis  and  selec/ve  purifica/on  of  op/mally  glycosylated  product  to  meet  regulatory  requirements  and  to  bring  safer,  more  effec/ve  ,products  to  pa/ents.    

Recombinant  Prokaryo/c  Lec/ns  (RPL’s)  offer  new  opportuni/es  to  develop  enhanced  glycoselec/ve  tools  for  glycoprotein  analysis  and  purifica/on  and  to  overcome  the  limita/ons  that    have  restricted  the  applica/ons  of  plant  lec/ns.    

•  1  mL  &  5  mL  Columns  compa/ble  with  LC  systems  (A).  

 

•  High  RPL  densi/es  (~20  mg.mL-­‐1).  

•  High  binding  capacity  (B).  •  RPL-­‐Gal1:  24  mg  .mL-­‐1  asialofetuin  •  ECL:    10  mg.mL-­‐1  asialofetuin  

•  Demonstrated  reproducibility  (C).  

Simple  Isola<on  of  Glycoproteins    

Enhanced  Proper<es  of  RPL’s  Compared  to  Commercial  Bio<nylated  Plant  Lec<ns.  A.    Enhanced  Affinity  of  RPL’s:    

•  RPL-­‐Gal2   shows   3-­‐fold   higher   affinity   than  parental  RPL-­‐αGal.    

•  RPL-­‐Man1   shows   7   fold   higher   affinity   than  parental  RPL-­‐  αMan  

B.   Altered  Specificity  of  RPL’s::       RPL-­‐Gal1  displays   strong  binding   to  Galβ1-­‐4-­‐linked  sugars  which  parental  RPL-­‐αGal  cannot  bind.  

C.    Superior  Affinity  to  Plant  Lec<ns:  •  RPL-­‐Gal2    -­‐      3  fold  higher  than  GSL-­‐I  B4.  •  RPL-­‐Gal1    -­‐      5  fold  higher  than  ECL..  •  RPL-­‐Man1    -­‐      24  fold  higher  than  GNL.  

D.    Enhanced  Detectability  over  Plant  Lec<ns:.  •  Lower  concentra/ons  of  RPL’s    required.  •  Significantly  higher  signal  strength    (3  fold).  

 

A.  Binding  to  Galα1-­‐3Gal-­‐BSA.   B.  Binding  to  Galβ1-­‐4GlcNAc-­‐BSA.   C.  Binding  to  Glucose  Oxidase.  

 Frac<ona<on  of  Glycoprotein  Glycoforms      •  Separa/on   of   asialotransferrin   &  transferrin     using   a   1   mL   RPL-­‐Gal1  column.    

•  Bound   protein   eluted   with   0.5   M  galactose.      

•  Conforma/on  of  separa/on  by  ELLA:    ECL  and  RPL-­‐Gal1  only  responded    to  the  eluted  frac/on  (insert).  

 

 RPL-­‐Sepharoses:  FPLC  &  HPLC  Columns:          

•  High  level  of  expression  in  E.  coli  (Lane  1).    

•  Single  step  purifica/on  via  IMAC.  

•  High  purity  product  (Lane  4).  •  Scalable  Produc/on  -­‐  1g   from  1L  culture.  

•  Cost  effec/ve  produc/on  of  large  quan//es  

1          2          3            4        

(B)  

(C)  

A    G        R                      M      1        2      3        4        

(A)