Fully Quantum Measurements of the Electron Magnetic Moment

51
Fully Quantum Measurements of the Electron Magnetic Moment Brian Odom Research performed at Harvard University, Gabrielse group Les Houches Physics with Trapped Charged Particles January 2012

Transcript of Fully Quantum Measurements of the Electron Magnetic Moment

Page 1: Fully Quantum Measurements of the Electron Magnetic Moment

Fully Quantum Measurements of the Electron Magnetic Moment

Brian Odom Research performed at Harvard University,

Gabrielse group Les Houches Physics with Trapped Charged Particles January 2012

Page 2: Fully Quantum Measurements of the Electron Magnetic Moment

New values for g and α

Funding: NSF

Page 3: Fully Quantum Measurements of the Electron Magnetic Moment

Newer values for g and α

Phys. Rev. Lett. 106, 080801 (2011)

Page 4: Fully Quantum Measurements of the Electron Magnetic Moment

The electron g-factor

Classical, non-relativistic Dirac equation as single- particle wave equation Quantum Electrodynamics (QED)

2.002 319 304g = ...

2g =

1g =

2e S

gm

µ

= −

B

Sgµ

µ≡

or, if you prefer …

Page 5: Fully Quantum Measurements of the Electron Magnetic Moment

g-factor from QED 2 3 4

1 2 3 41 ...2g C C C C non QEDα α α α

π π π π = + + + + + + −

Page 6: Fully Quantum Measurements of the Electron Magnetic Moment

Why measure the electron g-factor?

• Determination of α, using QED calculations

Page 7: Fully Quantum Measurements of the Electron Magnetic Moment

Why measure the electron g-factor?

• Determination of α, using QED calculations

• Precision test of QED

Page 8: Fully Quantum Measurements of the Electron Magnetic Moment

α-1137.03599 137.03600 137.03601

∆α / α (ppb)-100-50050100

muonium h.f. structure

electron g, UW 1987

quantum Hall effect

ac Josephson effect & γp,h

h / mn

h / mCs, optical trans- itions, mass ratios

electron g, Harvard 2006

h / mRb, mass ratios

Testing QED with measurements of α

?

Page 9: Fully Quantum Measurements of the Electron Magnetic Moment

Why measure the electron g-factor?

• Determination of α, using QED calculations

• Precision test of QED

• Probe for electron sub-structure (R < 10-18 m)

Page 10: Fully Quantum Measurements of the Electron Magnetic Moment

Why measure the electron g-factor?

• Determination of α, using QED calculations

• Precision test of QED

• Probe for electron sub-structure (R < 10-18 m)

• Precision test of Lorentz, CPT symmetry

Page 11: Fully Quantum Measurements of the Electron Magnetic Moment

Why measure the electron g-factor?

• Determination of α, using QED calculations

• Precision test of QED

• Probe for electron sub-structure (R < 10-18 m)

• Precision test of Lorentz, CPT symmetry

• Complement to the muon g-factor measurement

Page 12: Fully Quantum Measurements of the Electron Magnetic Moment

Why measure the electron g-factor?

• Determination of α, using QED calculations

• Precision test of QED

• Probe for electron sub-structure (R < 10-18 m)

• Precision test of Lorentz, CPT symmetry

• Complement to the muon g-factor measurement

• Prospects for improved proton to electron mass ratio

Page 13: Fully Quantum Measurements of the Electron Magnetic Moment

A single electron in a Penning trap

motion frequency hυ/kB damping axial 200 MHz 9.6 mK 1 Hz

cyclotron 149.0 GHz 7.2 K 0.02 Hz

spin 149.2 GHz 7.2 K 10-12 Hz

magnetron 130 kHz 6.4 µK 10-17 Hz

Page 14: Fully Quantum Measurements of the Electron Magnetic Moment

g-factor measurement

( )( ) ( )

2 1a z c 2

21 1c z c2 2

2=1

2 2g ω ω ω δ

ω δ ω ω δ− +

++ + +

g in free space:

g-2 in free space:

a

c

21 12 2g g ω

ω−= + = +

g-2 in a Penning trap:

[ Brown and Gabrielse. Rev. Mod. Phys. 58, 1 (1986) ] (3 orders of magnitude for free)

B s s

B B c

22Bg

Sω ωµ

µ µ ω

µµ

≡ = = =

Page 15: Fully Quantum Measurements of the Electron Magnetic Moment

Cylindrical Penning trap construction

Page 16: Fully Quantum Measurements of the Electron Magnetic Moment

Dilution refrigerator and magnet

Page 17: Fully Quantum Measurements of the Electron Magnetic Moment

A tabletop experiment … if you have a high ceiling

Page 18: Fully Quantum Measurements of the Electron Magnetic Moment

Experimental setup

Page 19: Fully Quantum Measurements of the Electron Magnetic Moment

B-fi

eld

shift

(ppb

)

-20

-10

0

10

20

time (hours)0 10 20 30 40 50 60

dew

ar te

mpe

ratu

re (C

)

19.0

19.5

20.0

20.5

21.0

21.5

B-fi

eld

shift

(ppb

)

-20

-10

0

10

20

time (hours)0 20 40 60

dew

ar te

mpe

ratu

re (C

)

19.0

19.5

20.0

20.5

21.0

21.5

B-field stability against room temperature

•Magnet with two broken shims •No temperature regulation

•Magnet with working shims •Shed temperature regulated

Friday, Saturday construction

< 1 ppb noise and drift at night

~ 0.1 K temperature regulation of dewar

Page 20: Fully Quantum Measurements of the Electron Magnetic Moment

The axial oscillator is coupled to a tuned-circuit amplifier

Response to a resonant rf-drive applied to an endcap

Detection of single electron axial motion

Page 21: Fully Quantum Measurements of the Electron Magnetic Moment

Feedback for self-excitation

B. D’Urso, R. Van Handel, B. Odom, D. Hanneke, and G. Gabrielse. Phys. Rev. Lett. 94, 113002 (2005)

Page 22: Fully Quantum Measurements of the Electron Magnetic Moment

Quantized cyclotron motion

Can we observe quantum jumps between the cyclotron states?

Page 23: Fully Quantum Measurements of the Electron Magnetic Moment

Cylindrical cavity suppresses decay

decay time (s)0 10 20 30 40 50 60

num

ber o

f n=1

to n

=0 d

ecay

s

0

10

20

30

time (s)0 100 200 300

axia

l fre

quen

cy s

hift

(Hz)

-3

0

3

6

9

12

15

τ = 16 s

• In free space, cyclotron lifetime = 0.08 s

• In our cylindrical traps, we have

achieved up to a 16 s lifetime

[ Peil and Gabrielse. Phys. Rev. Lett. 83, 1287 (1999) ]

Page 24: Fully Quantum Measurements of the Electron Magnetic Moment

Magnetic transitions are detected by a shift in the axial frequency

4

0

1

2

3

z

“Magnetic bottle” couples magnetic and axial oscillators

Detection of magnetic transitions

2z 0 2B B B z= + 2 21

E s c 22 k z zU Bµ ++=

Page 25: Fully Quantum Measurements of the Electron Magnetic Moment

Sub-Kelvin cyclotron temperature… Thermal Jumps

[ Peil and Gabrielse. Phys. Rev. Lett. 83, 1287 (1999) ]

• Permits single-quantum cyclotron spectroscopy

Page 26: Fully Quantum Measurements of the Electron Magnetic Moment

Sub-Kelvin cyclotron temperature… Thermal Jumps

[ Peil and Gabrielse. Phys. Rev. Lett. 83, 1287 (1999) ]

• Permits single-quantum cyclotron spectroscopy

Relativistic Corrections

• Eliminates relativistic error from ωc uncertainty

Page 27: Fully Quantum Measurements of the Electron Magnetic Moment

Single quantum cyclotron spectroscopy

time (s)0 100 200 300

axia

l fre

quen

cy s

hift

(Hz)

-3

0

3

6

9

12

15

Procedure: 1. Turn FET amplifier off 2. Apply a microwave drive pulse of ~150 GHz 3. Turn FET amplifier on, check for axial frequency shift 4. Plot a histograms of excitations vs. frequency

Page 28: Fully Quantum Measurements of the Electron Magnetic Moment

frequency - υc (ppb)0 100 200 300

# of

cyc

lotr

on e

xcita

tions

Single quantum cyclotron spectroscopy

time (s)0 100 200 300

axia

l fre

quen

cy s

hift

(Hz)

-3

0

3

6

9

12

15

Procedure: 1. Turn FET amplifier off 2. Apply a microwave drive pulse of ~150 GHz 3. Turn FET amplifier on, check for axial frequency shift 4. Plot a histograms of excitations vs. frequency

Poor amp heat sinking, amp off during excitation Tz = 16 K

Page 29: Fully Quantum Measurements of the Electron Magnetic Moment

frequency - υc (ppb)0 100 200 300

# of

cyc

lotr

on e

xcita

tions

Single quantum cyclotron spectroscopy

time (s)0 100 200 300

axia

l fre

quen

cy s

hift

(Hz)

-3

0

3

6

9

12

15

Procedure: 1. Turn FET amplifier off 2. Apply a microwave drive pulse of ~150 GHz 3. Turn FET amplifier on, check for axial frequency shift 4. Plot a histograms of excitations vs. frequency

Good amp heat sinking, amp on during excitation Tz = 3.7 K

Page 30: Fully Quantum Measurements of the Electron Magnetic Moment

frequency - υc (ppb)0 100 200 300

# of

cyc

lotr

on e

xcita

tions

Single quantum cyclotron spectroscopy

time (s)0 100 200 300

axia

l fre

quen

cy s

hift

(Hz)

-3

0

3

6

9

12

15

Procedure: 1. Turn FET amplifier off 2. Apply a microwave drive pulse of ~150 GHz 3. Turn FET amplifier on, check for axial frequency shift 4. Plot a histograms of excitations vs. frequency

Good amp heat sinking, amp off during excitation Tz = 0.32 K

Page 31: Fully Quantum Measurements of the Electron Magnetic Moment

An unpleasant surprise:

Temperature-dependent B

•We observed a huge shift of B-field vs. trap temperature •Heat load changes are unavoidable as:

•Amplifier cycles on/off

•Anomaly drive is applied

•10 ppb / mK is far too much!

tem

pera

ture

(mK

)

707580859095

100105

time (hours)0 2 4 6 8 10

B fi

eld

shift

(ppb

)

-300-250-200-150-100

-500

Shift of -10 ppb / mK at 75 mK !!!

Page 32: Fully Quantum Measurements of the Electron Magnetic Moment

temperature (Kelvin)

0.0 0.5 1.0 1.5 2.0

mag

netic

fiel

d sh

ift (p

pb)

-100

0

100

200

300

400

500

600

700

temperature-1 (Kelvin-1)

0 5 10 15-100

0

100

200

300

400

500

600

700

•Nuclear paramagnetism makes standard Penning trap materials (copper, MACOR) incompatible with a stable B-field below 1 K

Curie-law paramagnetism…OF OUR TRAP!

40 ppb / K-1

Page 33: Fully Quantum Measurements of the Electron Magnetic Moment

New silver trap

Page 34: Fully Quantum Measurements of the Electron Magnetic Moment

Prototype silver tripod

Page 35: Fully Quantum Measurements of the Electron Magnetic Moment

temperature (Kelvin)

0.0 0.5 1.0 1.5 2.0

mag

netic

fiel

d sh

ift (p

pb)

-100

0

100

200

300

400

500

600

700

copper trapsilver trap

temperature-1 (Kelvin-1)

0 5 10 15-100

0

100

200

300

400

500

600

700

copper trapsilver trap

0.0 0.5 1.0 1.5 2.0

expa

nded

200

x

-10

0

10

20

30

•New silver trap decreases T-dependence of the field by ~ 400

•With the silver trap, sub-ppb field stability is easily achieved

Silver trap improvement

40 ppb / K-1

0.1 ppb / K-1

Page 36: Fully Quantum Measurements of the Electron Magnetic Moment

Finally—narrow line shapes

Page 37: Fully Quantum Measurements of the Electron Magnetic Moment

frequency - 170 410 496.7 Hz-0.5 0.0 0.5 1.0 1.5

spin

flip

frac

tion

0.00

0.05

0.10

0.15

0.20

2 ppb

frequency - 170 410 496.7 Hz-2 0 2 4 6 8 10

spin

flip

frac

tion

0.00

0.05

0.10

0.15

0.20

10 ppb

Comparison of line shapes

U. Wash. anomaly line

Harvard anomaly line

U. Wash. Harvard

Tz (K) 6 0.6 0.1 υz (MHz) 60 200 0.09 B2 (T/m2) 150 1500 10

H

UW

∆∆

H

UW0.1∆

∆ =

[ Van Dyck et al. Phys. Rev. Lett. 59, 26 (1987) ]

Page 38: Fully Quantum Measurements of the Electron Magnetic Moment

Scatter in g-factor measurements

uWave power (a.u.)0 20 40 60 80

176

178

180

182

184

186

Harvard 2006 UW 1987

UW 1991

uWave power (a.u.)0 20 40 60 80

176

178

180

182

184

186

Page 39: Fully Quantum Measurements of the Electron Magnetic Moment

Cavity mode structure

• Parametric response of large e- cloud maps cavity mode structure [ Tan and Gabrielse. App. Phys. Lett. 55, 2144 (1989) ]

Page 40: Fully Quantum Measurements of the Electron Magnetic Moment

Cavity mode structure

• Parametric response of large e- cloud maps cavity mode structure

• Modes coupling to centered single e- cloud are easily identified [ Tan and Gabrielse. App. Phys. Lett. 55, 2144 (1989) ]

TE 1n1 TM 1n1

Page 41: Fully Quantum Measurements of the Electron Magnetic Moment

First observation of cavity shift of g

Page 42: Fully Quantum Measurements of the Electron Magnetic Moment

Final Error Budget

Page 43: Fully Quantum Measurements of the Electron Magnetic Moment

Measurement summary

Harvard g-factor measurement: • Fully quantum measurement eliminates relativistic shift

( 1 ppt per quantum level )

• Low temperature allows quantum spectroscopy and narrows lines

• Cylindrical trap allows first quantitative treatment of cavity shift

Results : g / 2 = 1.001 159 652 180 85 (76) (0.76 ppt) α = 137.035 999 710 (90) (32) 137.035 999 710 (96) (0.70 ppb)

-1

Page 44: Fully Quantum Measurements of the Electron Magnetic Moment

Measurement summary

Harvard g-factor measurement: • Fully quantum measurement eliminates relativistic shift

( 1 ppt per quantum level )

• Low temperature allows quantum spectroscopy and narrows lines

• Cylindrical trap allows first quantitative treatment of cavity shift

g / 2 = 1.001 159 652 180 85 (76) (0.76 ppt) α = 137.035 999 710 (90) (32) 137.035 999 710 (96) (0.70 ppb)

-1

Results :

Page 45: Fully Quantum Measurements of the Electron Magnetic Moment

New values for g and α

g / 2 = 1.001 159 652 180 85 (76) (0.76 ppt) α = 137.035 999 710 (90) (32) 137.035 999 710 (96) (0.70 ppb)

Page 46: Fully Quantum Measurements of the Electron Magnetic Moment

g-factor from QED 2 3 4

1 2 3 41 ...2g C C C C non QEDα α α α

π π π π = + + + + + + −

Page 47: Fully Quantum Measurements of the Electron Magnetic Moment

Harvard 2008 measurement

Page 48: Fully Quantum Measurements of the Electron Magnetic Moment

Harvard 2008 measurement

Page 49: Fully Quantum Measurements of the Electron Magnetic Moment

Harvard 2008 measurement

Page 50: Fully Quantum Measurements of the Electron Magnetic Moment

α, a wrinkle and a new measurement

Phys. Rev. Lett. 106, 080801 (2011)

Page 51: Fully Quantum Measurements of the Electron Magnetic Moment

QED…Still standing 57 years later