Formelblatt - thphys.uni-heidelberg.dewolschin/ed-formelblatt.pdf · Die assozierten...

3

Click here to load reader

Transcript of Formelblatt - thphys.uni-heidelberg.dewolschin/ed-formelblatt.pdf · Die assozierten...

Page 1: Formelblatt - thphys.uni-heidelberg.dewolschin/ed-formelblatt.pdf · Die assozierten Legendre-Polynome fu¨r l =0;1;2 sind: P0 0(cos ) = 1 P0 1(cos ) = cos P1 1(cos ) = p 1 cos2 P

Formelblatt

Vektor-Identitaten

~A · (~B × ~C) = ~B · ( ~C × ~A) = ~C · (~A × ~B)~A × (~B × ~C) = (~A · ~C)~B − (~A · ~B) ~C

(~A × ~B) · ( ~C × ~D) = (~A · ~C)(~B · ~D) − (~A · ~D)(~B · ~C)

∇ × ∇φ = 0

∇ · (∇ × ~A) = 0

∇ × (∇ × ~A) = ∇(∇ · ~A) − ∇2 ~A

∇ · (ψ~A) = ~A · ∇ψ + ψ∇ · ~A∇ × (ψ~A) = ∇ψ × ~A + ψ∇ × ~A∇(~A · ~B) = (~A · ∇)~B + (~B · ∇)~A + ~A × (∇ × ~B) + ~B × (∇ × ~A)

∇ · (~A × ~B) = ~B · (∇ × A) − ~A · (∇ × B)

∇ × (~A × ~B) = ~A(∇ · ~B) − ~B(∇ · ~A) + (~B · ∇)~A − (~A · ∇)~B

Differential-Operatoren

Kartesische Koordinaten (x1, x2, x3):

∇ψ = ~e1∂ψ

∂x1+ ~e2

∂ψ

∂x2+ ~e3

∂ψ

∂x3

∇ · ~A =∂A1

∂x1+∂A2

∂x2+∂A3

∂x3

∇ × ~A = ~e1

(

∂A3

∂x2− ∂A2

∂x3

)

+ ~e2

(

∂A1

∂x3− ∂A3

∂x1

)

+ ~e3

(

∂A2

∂x1− ∂A1

∂x2

)

∇2ψ =∂2ψ

∂x21

+∂2ψ

∂x22

+∂2ψ

∂x23

Zylinderkoordinaten (r, φ, z):

∇ψ = ~er∂ψ

∂r+ ~eφ

1r∂ψ

∂φ+ ~ez

∂ψ

∂z

∇ · ~A =1r∂(r Ar)∂r

+1r

∂Aφ

∂φ+∂Az

∂z

∇ × ~A = ~er

(

1r∂Az

∂φ−∂Aφ

∂z

)

+ ~eφ

(

∂Ar

∂z− ∂Az

∂r

)

+ ~ez1r

(

∂ (rAφ)

∂r− ∂Ar

∂φ

)

∇2ψ =1r∂

∂r

(

r∂ψ

∂r

)

+1r2

∂2ψ

∂φ2+∂2ψ

∂z2

Page 2: Formelblatt - thphys.uni-heidelberg.dewolschin/ed-formelblatt.pdf · Die assozierten Legendre-Polynome fu¨r l =0;1;2 sind: P0 0(cos ) = 1 P0 1(cos ) = cos P1 1(cos ) = p 1 cos2 P

Kugelkoordinaten (r, θ, φ):

∇ψ = ~er∂ψ

∂r+ ~eθ

1r∂ψ

∂θ+ ~eφ

1r sin θ

∂ψ

∂φ

∇ · ~A =1r2

∂(r2Ar)∂r

+1

r sin θ∂(sin θAθ)

∂θ+

1r sin θ

∂Aφ

∂φ

∇ × ~A = ~er1

r sin θ

[

∂(sin θAφ)

∂θ− ∂Aθ

∂φ

]

+ ~eθ

[

1r sin θ

∂Ar

∂φ− 1

r

∂(r Aφ)

∂r

]

+ ~eφ1r

[

∂(r Aθ)∂r

− ∂Ar

∂θ

]

∇2ψ =1r2

∂r

(

r2∂ψ

∂r

)

+1

r2 sin θ∂

∂θ

(

sin θ∂ψ

∂θ

)

+1

r2 sin2 θ

∂2ψ

∂φ2

≡ 1r∂2(rψ)∂r2

+1

r2 sin θ∂

∂θ

(

sin θ∂ψ

∂θ

)

+1

r2 sin2 θ

∂2ψ

∂φ2

Kugelflachenfunktionen

Das Koordinatensystem:

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

Die Yl,m fur l = 0, 1, 2 sind:

Y0,0 =1√

Y1,0 =

34π

cos θ

Y1,1 = −√

38π

sin θeiφ

Y1,−1 =

38π

sin θe−iφ

Y2,0 =

54π

12

(3 cos2 θ − 1)

Y2,1 = −√

158π

sin θ cos θeiφ

Y2,−1 =

158π

sin θ cos θe−iφ

Y2,2 =

152π

14

sin2 θe2iφ

Y2,−2 =

152π

14

sin2 θe−2iφ

Page 3: Formelblatt - thphys.uni-heidelberg.dewolschin/ed-formelblatt.pdf · Die assozierten Legendre-Polynome fu¨r l =0;1;2 sind: P0 0(cos ) = 1 P0 1(cos ) = cos P1 1(cos ) = p 1 cos2 P

Die assozierten Legendre-Polynome fur l = 0, 1, 2 sind:

P00(cos θ) = 1

P01(cos θ) = cos θ

P11(cos θ) = −

√1 − cos2 θ

P−11 (cos θ) =

12

√1 − cos2 θ

P02(cos θ) =

12

(3 cos2 θ − 1)

P12(cos θ) = −3

√1 − cos2 θ cos θ

P−12 (cos θ) =

12

√1 − cos2 θ cos θ

P22(cos θ) = 3(1 − cos2 θ)

P−22 (cos θ) =

18

(1 − cos2 θ)