FLYING PIG LAB - WikispacesPIG+LAB.pdf · Flying Pig Lab 1. Once it ... Once it reaches...

2
Flying Pig Lab 1. Once it reaches equilibrium, the pig flies in constant velocity in what is called a "conical pendulum". In our report, draw and clearly label a force diagram of the flying pig. To do this, consider a snaphot of the pig from the side. Show the angle the string makes with the vertical, θ, and the radius to the center of the circle (Hint: the radius of the circle in which it flies is not the length of the string). Then diagram all the force on the pig as per the instructions you have been given to follow for all Force Diagrams. Use dotted line to show the horizontal and vertical components of the tension on the string (T). 2. Use the Force Diagram to write the Newton's Second Law equations. Derive a formula for the centripetal acceleration of the pig in terms of the variables you used in your force diagram. 3. Now derive a formula for the theoretical speed of the pig in equilibrium based on its mass and the other variables in your force diagram (from your Newton's Second Law formula, solve for v). 4. Now start the pig flying. Once the pig is up and flying in a circle of constant radius, measure the radius of the circle and the angle θ as accurately as you can. Express your answer in meters. There are several ways to determine the angle the string makes with the vertical, θ, without using a protractor. (Think trigonometry; think of ways to document or "freeze" its motion). Describe your method and then record your value for θ. Maybe you need to use a couple methods and compare them? Include in your report a clearlylabeled, neat sketch(s) that shows how you measured θ and r. 5. Without any timing device, determine the time for the pig to make 10 revolutions. Then, have this checked by your teacher. 6. Compute the percent difference between these values. 7. Finish the Lab report, comment on the percent difference. Include Sources of Error.

Transcript of FLYING PIG LAB - WikispacesPIG+LAB.pdf · Flying Pig Lab 1. Once it ... Once it reaches...

Page 1: FLYING PIG LAB - WikispacesPIG+LAB.pdf · Flying Pig Lab 1. Once it ... Once it reaches equilibrium, the pig flies in constant velocity in what is called a "conical pendulum". In

Flying Pig Lab

1. Once it reaches equilibrium, the pig flies in constant velocity in what is called a "conical pendulum".  In our 

report, draw and clearly label a force diagram of the flying pig.  To do this, consider a snap‐hot of the pig from the side.  Show the angle the string makes with the vertical, θ, and the radius to the center of the circle  (Hint: the radius of the circle in which it flies is not the length of the string).  Then diagram all the force on the pig as per the instructions you have been given to follow for all Force Diagrams.  Use dotted line to show the horizontal and vertical components of the tension on the string (T).   

 

2. Use the Force Diagram to write the Newton's Second Law equations.  Derive a formula for the centripetal acceleration of the pig in terms of the variables you used in your force diagram.   

 

3. Now derive a formula for the theoretical speed of the pig in equilibrium based on its mass and the other variables in your force diagram (from your Newton's Second Law formula, solve for v).   

 

4. Now start the pig flying.  Once the pig is up and flying in a circle of constant radius, measure the radius of the circle and the angle θ as accurately as you can. Express your answer in meters.   

There are several ways to determine the angle the string makes with the vertical, θ, without 

using a protractor.  (Think trigonometry; think of ways to document or "freeze" its motion).  

Describe your method and then record your value for θ.  Maybe you need to use a couple 

methods and compare them?  Include in your report a clearly‐labeled, neat sketch(s) that shows 

how you measured θ and r.   

5. Without any timing device, determine the time for the pig to make 10 revolutions.  Then, have this checked by your teacher.  

6. Compute the percent difference between these values.    

7. Finish the Lab report, comment on the percent difference.  Include Sources of Error.    

 

Page 2: FLYING PIG LAB - WikispacesPIG+LAB.pdf · Flying Pig Lab 1. Once it ... Once it reaches equilibrium, the pig flies in constant velocity in what is called a "conical pendulum". In

CONICAL PENDULUM PROBLEMS

1. A model airplane of mass 0.750 kg flies in a horizontal circle at the end of a 60.0 m control wire, with a speed of 35.0 m/s. (a) What is the centripetal force on the airplane? (b) How much time is required for the plane to make 15.0 revolutions?

 

 

 

2. An amusement park ride consists of rotating “swings” from which 10.0 kg seats are suspended at the end of 2.50 meter chains. When the system rotates, the chains make an angle = 28.0, with the vertical. (a) Find the centripetal force on the swing (b) Find the radius of the circle. (c) What is the speed of each seat as it follows its path?

 

 

 

 

20.0 o 

60.0 m 

2.50 m 

28.0 o