Experimental proposal for MDM/EDM of strange baryons in LHCb

18
Experimental proposal for MDM/EDM of strange baryons in LHCb Jinlin Fu University of Milano on behalf of the SELDOM Collaboration Workshop on electromagnetic dipole moments of unstable particles October 3-4, 2019, Milano

Transcript of Experimental proposal for MDM/EDM of strange baryons in LHCb

Page 1: Experimental proposal for MDM/EDM of strange baryons in LHCb

Experimental proposal for MDM/EDM of strange baryons in LHCb

Jinlin Fu University of Milano

on behalf of the SELDOM Collaboration

Workshop on electromagnetic dipole moments of unstable particles October 3-4, 2019, Milano

Page 2: Experimental proposal for MDM/EDM of strange baryons in LHCb

Introduction

2

• Electromagnetic dipole moments are static properties of particles

• EDM violates P and T, thus violates CP. EDM searches are sensitive to new physics

EDM: ! ⃗δ = dμB ⃗s /2

MDM: ! ⃗μ = gμB ⃗s /2

• MDM measurement of particle and anti-particle allows to test CPT

Gaussian units !μB = eℏ/(2mc)

Page 3: Experimental proposal for MDM/EDM of strange baryons in LHCb

How to access EDM/MDM

3

• Spin precession induced by interaction of its EDM and MDM with external EM field

dsdt = s⇥⌦

<latexit sha1_base64="s3EBHYCFG5oa3dRFGvsvD8PRhRM=">AAACO3icbVC7SgNBFJ31bXxFLW0Gg6BN2NVCGyVoY6eCiUI2hNnJ3Tg4M7vM3BXCsn/jb/gDttpYCxZia+/kge8DA+eeey/nzolSKSz6/pM3Nj4xOTU9M1uam19YXCovrzRskhkOdZ7IxFxGzIIUGuooUMJlaoCpSMJFdH3U71/cgLEi0efYS6GlWFeLWHCGTmqXD8LNMDaM5x0aKoZXUZzbonAVFvtfAg1RKLCfI+GJgi4rwq12ueJX/QHoXxKMSIWMcNouv4SdhGcKNHLJrG0GfoqtnBkUXEJRCjMLKePXrAtNRzVztq188M+CbjilQ+PEuKeRDtTvGzlT1vZU5Cb7h9rfvb74X6+ZYbzXyoVOMwTNh0ZxJikmtB8a7QgDHGXPEcaNcLdSfsVcbOii/eESQ0+rtCi5YILfMfwlje1qsFP1z7YrtcNRRDNkjayTTRKQXVIjx+SU1Aknt+SePJBH78579l69t+HomDfaWSU/4L1/AJZ5r3o=</latexit>

⌦ = ⌦MDM +⌦EDM +⌦TH<latexit sha1_base64="rPf5ZW9/NULqSPUvLJYvAL1mkwY=">AAACcHicfVHbSgMxEM2ut1pvVV8EH1wtQlUou/VBXwTxAr6IFXoRuqVk09kaTLJLkhXKsh/aH/AD/AHN1grW20DImXNmmMlJEDOqtOuOLHtmdm5+obBYXFpeWV0rrW+0VJRIAk0SsUg+BFgBowKammoGD7EEzAMG7eDpMtfbzyAVjURDD2PocjwQNKQEa0P1Ssqv+EHE+mrIzZX6dxwGODvzOdaPQfiZ99IxIXl6e3WbZUd/ytf/y42bLPMPeqWyW3XH4fwE3gSU0STqvdKL349IwkFowrBSHc+NdTfFUlPCICv6iYIYkyc8gI6BAnNQ3XRsTubsG6bvhJE0R2hnzH7tSDFX+etNZb6l+q7l5G9aJ9HhaTelIk40CPIxKEyYoyMnd9rpUwlEs6EBmEhqdnXII5aYaPMfU1NCGAoeZ0VjjPfdhp+gVat6x1X3vlY+v5hYVEDbaA9VkIdO0Dm6QXXURASN0JtVsBatV3vL3rF3P0pta9KziabCPnwHVrHBJg==</latexit>

⌦MDM = gµB

~

⇣B� �

�+1 (� ·B)� � � ⇥E⌘

<latexit sha1_base64="TxaDHsFw9tHyPkxoLO4gw0jACL8=">AAACw3icbVFda9swFJW9ry77aNo97kUsDBK2Brt72F4KJV1hL2XdWNpCFIwsy46IZBvpuhCE/t7+Q//AfsfkxHRr0wtCh3PP4V7OTWspDETRTRA+evzk6bOd570XL1+93u3v7V+YqtGMT1klK32VUsOlKPkUBEh+VWtOVSr5Zbo8afuX11wbUZW/YFXzuaJFKXLBKHgq6f8mQ6IoLNLcku+KF9Qldk1oZc++njl3RHJNmS0wUU1iJ85ZskipdkTyHG69E3ew0ZGCKkVd93+I3ZCklczMSvnPkpQDdZiwrAL8zzvC26KDh3wgFDe3xlNHtCgWMCKjpD+IxtG68DaIOzBAXZ0n/T8kq1ijeAlMUmNmcVTD3FINgknueqQxvKZsSQs+87CkfvDcrvN2+L1nMpxX2r8S8Jr932GpMu3mXtmuau73WvKh3qyB/MvcirJugJdsMyhvJIYKt8fDmdCcgVx5QJkWflfMFtTnDv7Ed6bkfFWq2vV8MPH9GLbBxeE4/jSOfhwOjiddRDvoLXqHhihGn9Ex+obO0RSx4GPwM5gFJDwNl6EOYSMNg87zBt2p0P0F+ITg1w==</latexit>

⌦EDM = dµB

~

⇣E� �

�+1 (� ·E)� � � ⇥B⌘

<latexit sha1_base64="2WccQcBCHRkPWRnD9DQgnVPpLdE=">AAACunicbVFda9swFJW9j3bZR7P2cS9iYZAwGuzuYX1YoaQrbA9j3UfaQhSMLMuOiGQb6XoQhH7afsj+wH7H5MRsa9MLQodzz+Fezk1rKQxE0a8gvHf/wcOd3Ue9x0+ePtvrP9+/NFWjGZ+ySlb6OqWGS1HyKQiQ/LrWnKpU8qt0edb2r35wbURVfodVzeeKFqXIBaPgqaT/kwzJZ8ULmliiKCy0sufvPzl3QnJNmc0wUU1iJ85ZskipdkTyHIZraZrbc3e40ZGCKkVd97+O3ZCklczMSvnPkpQDdZiwrAL8zzvC26LDu3wgFDd/jRNHtCgWMCKjpD+IxtG68DaIOzBAXV0k/d8kq1ijeAlMUmNmcVTD3FINgknueqQxvKZsSQs+87CkfvDcrmN2+JVnMpxX2r8S8Jr932GpMu3mXtmuam73WvKu3qyB/HhuRVk3wEu2GZQ3EkOF25vhTGjOQK48oEwLvytmC+pzB3/ZG1NyvipV7Xo+mPh2DNvg8mgcvxlHX44Gp5Muol30Ar1EQxSjt+gUfUAXaIpYMAg+Bl+Db+G7MA1FuNxIw6DzHKAbFcIfsz7crw==</latexit>

• Known polarised sample, intense E and B inducing sizeable precision angle

T-BMT equation:

EPJC77(2017)181

Page 4: Experimental proposal for MDM/EDM of strange baryons in LHCb

Experimental status

4

• Last direct measurement in 70’s,80’s from E761@Fermilab

< 1.5 x 10-16 e cm @95% C.L.dΛ

Phys. Rev. Lett. 41 (1978) 1348

• Prediction using experimental upper limit of neutron EDM

< 4.4 x 10-26 e cm @95% C.L.dΛJHEP 12 (2012) 097PLB291 (1992) 293Nucl. Phys. B367(1991) 313Phys.Rev.D61 (2000) 114017

✓ Fixed target experiment with 300GeV proton beam on Be✓ Reconstructed 3x106 decaysΛ → pπ−

✓ No measurement for ! , hence no CPT test via MDMΛ

! =(–0.613±0.004) !μΛ μN

Phys. Rev. D23 (1981) 814

✓ Small transverse polarisation ~8%

plenty of scopy to improve direct measurement

✓ Magnet: 5m,±15Tm

✓ Momentum direction fixed to be perpendicular to ! ⃗B

Page 5: Experimental proposal for MDM/EDM of strange baryons in LHCb

Advantages in LHCb

5

• Production

• Large initial longitudinal polarisation

• Magnet

Perfect tracking, vertex determination, particle identification

✓ from weak decays of c and b baryons

✓ a tracking dipole magnet providing ! Tm over 10 metersDy ≈ ± 4

• Single arm forward detector, optimised for c and b hadron physics with large pseudorapidity (2< ! <5)η

✓ allow sizeable ! spin precessionΛ

✓ compatible ! and !Λ Λ

Page 6: Experimental proposal for MDM/EDM of strange baryons in LHCb

Challenges in LHCb

6

• LHCb Upgrade for Run3 (2021~2023):

• Details of trigger and reconstructions, see talks from Salvatore and Louis

• Significant backgrounds and limited resolution on measurement of ! momentum and decay pointΛ

✓ 40 MHz readout

✓ Real-time alignment and calibration

✓ Offline quality reconstruction at the online level

✓ Only software trigger

✓ (14TeV) 5 times than Run2 (13TeV), 50fb-1 end Run32 × 1033cm−2s−1

Page 7: Experimental proposal for MDM/EDM of strange baryons in LHCb

LHCb upgraded detector

7

Detectors for Run3

!y!z

New pixelVELO detector

New silicon Upstream Tracker (UT) New scintillating fibre tracker (SciFi)

New RICH optics and photodetectors

New electronics for calorimeter and muon system

Page 8: Experimental proposal for MDM/EDM of strange baryons in LHCb

LHCb Magnet

8

!y!z

• Measured B field values stable within ! =±0.07gaussσ

• ! 4Tm ∫ Bdl =

• Acceptance: hor. ±300 mrad vert. ±250 mrad

LHCb-INT-2015-034

x=0,y=0

Page 9: Experimental proposal for MDM/EDM of strange baryons in LHCb

! procession in LHCbΛ

9

UT

!x!z

!y!z

x=0,y=0

Page 10: Experimental proposal for MDM/EDM of strange baryons in LHCb

LHCb charged tracks

10

VELO

UT B

upstream track

velo track

long track

Downstream track

T track

• Long track: reconstructed in VELO and T-stations. Perfect reconstruction

• Downstream track: UT + T-stations. Good reconstruction• T track: T-stations. Worse reconstructed, not used in physics analysis

yet. Need to improve. (details see Salvatore's talk)Long + Downstream tracks to measure polarisation before MagnetT tracks to measure polarisation after Magnet

!x!z

Page 11: Experimental proposal for MDM/EDM of strange baryons in LHCb

T–BMT for ! in LHCbΛ

11

• Negligible field gradient effects, , E=0, q=0

• Specific case: ! and heavy baryon flying along z axis in lab systemΛ

• Main precession (MDM) in ! planexz• Non zero ! indicates EDMsy

! ≈ ± π/4

! Tm≈ 4

EPJC77(2017)181

• Sizeable spin precession achieved

Page 12: Experimental proposal for MDM/EDM of strange baryons in LHCb

Initial ! polarisation in LHCbΛ

12

• ! directly produced from pp collisions via strong interactions:Λ

✓ Initial transversal polarisation perpendicular to production plane, ! ⃗p beam × ⃗p Λ

✓ polarisation increase with !PtΛ

๏ not within LHCb angular acceptance

• ! produced from heavy baryon weak decays:Λ

✓ large longitudinal polarisation: ~90% in !Λ+c → Λπ+

✓ polarisation measured via analysis angular distribution of ! decay

Λ → pπ−

Page 13: Experimental proposal for MDM/EDM of strange baryons in LHCb

Source and production of !Λ

13

• Consider c baryon decays and charged final particles• At least one particle from heavy baryon decay vertex

! : c,b cross section pp@14TeVσqq̄

! :fragmentation fraction into heavy baryonf(q → H)

!1.5 × 1011

EPJC77(2017)181

!3.8 × 1011short-lived (SL) long-lived (LL)

Page 14: Experimental proposal for MDM/EDM of strange baryons in LHCb

Geometry efficiency

14

Experimental yield: Geometry eff. for SL topology estimated from simulation

R1: measure initial polarisationR2: measure polarisation as decay length in ! ⃗BM3: most sensitivity to MDM/EDM

EPJC77(2017)181

in %

Page 15: Experimental proposal for MDM/EDM of strange baryons in LHCb

Sensitivity

15

• Pseudo-experiments using simplified detector geometry

• ! -factor uncertainty:d

• With 50 fb-1 (end Run3) :

! =1MNrecoΛ

✓ ! , ! e cm, 2 orders of magnitude improveσd ≈ 3 × 10−4 δ(Λ) ≲ 1.3 × 10−18

✓ First ! MDM measurement at similar precisionΛ✓ First CPT test via ! MDM at ! levelΛ 10−3

EPJC77(2017)181

Page 16: Experimental proposal for MDM/EDM of strange baryons in LHCb

Polarisation measurement before magnet

16

• ! , !Ξ0c → Λh±h∓ Λ+

c , Ξ+c → Λh±h±h∓

• ! reconstructed using long and downstream tracksΛ• Program starting with Run 2 (6 fb-1)

2400 2450 2500 25502) MeV/c+π-KΛm(

0200400600800

1000120014001600

small fraction of data, not optimal selection

LHCb unofficial LHCb unofficial

• Still in tuning

LHCb unofficial

Long Downstream Downstream

Page 17: Experimental proposal for MDM/EDM of strange baryons in LHCb

Summary

17

• Proposed ! EDM/MDM measurements in LHCbΛ

• With 50 fb-1 in LHCb, expect 100 improvement of EDM, first MDM measurement with similar precision as EDM ~10-4, and first CPT test via MDM at 10-3 level

Λ

• Measurement of polarisation before Magnet starting from Run2 data

• Hard work needed to improve ! reconstructions: trigger, T-track reconstruction…

Λ

Page 18: Experimental proposal for MDM/EDM of strange baryons in LHCb

Probability Distribution Function

18

• spin-polarisation can be analysed through angular distribution of !Λ → pπ−