estimating electrode movement · electrode movement corrections Jacobian Methods Jm;x = U x 1....

19
estimating electrode movement in Two Dimensions Alistair Boyle 1 , Markus Jehl 2 , Michael Crabb 3 , Andy Adler 1 EIT2015, Neuchâtel, Switzerland 1 Carleton University, Ottawa, Canada 2 University College London (UCL), London, UK 3 University of Manchester, Manchester, UK

Transcript of estimating electrode movement · electrode movement corrections Jacobian Methods Jm;x = U x 1....

  • estimating electrode movementin Two Dimensions

    Alistair Boyle1, Markus Jehl2, Michael Crabb3, Andy Adler1EIT2015, Neuchâtel, Switzerland1Carleton University, Ottawa, Canada2University College London (UCL), London, UK3University of Manchester, Manchester, UK

  • electrode movement corrections

    Jacobian Methods Jm,x = δUδx1. Naïve perturbation2. perturbation3. rank-one update1

    4. Fréchet derivative2 VδU

    δxElectrode

    1Gómez-Laberge C, Adler A. Physiol Meas 29(6):S89–S99, 20082Dardé J, Hakula H, Hyvönen N, et al. Inverse Problems and Imaging 6(3):399–421, 2012

    1

  • motivation

    ∙ explore sensitivity of the direct perturbation method

    ∙ understand Fréchet derivative and build an implementation

    ∙ ask the Engineering question:

    Do these methods give the same answers for a simplified model?

    2

  • movement jacobian

    Movement In our case, two-dimensional tangential electrodemovement on a fixed boundary.

    Jacobian An estimate of the local slope.

    For Gauss-Newton updates, the Jacobian, in part, determines searchdirection δx, followed by a line search for distance α. If sufficientlylinear, then α = 1 can work well.

    δx = (JTJ+ λ2RTR)−1 JTU (1)xn+1 = xn + α δx (2)

    3

  • a two-dimensional half-space model

    hmax = 0.1 m deℓ = 0.2 m zc = 0.02 Ω·m σ = 1 S/m

    4

  • perturbation

    Naïve Perturbation Naïve Perturbation

    Jm =δUδx

    all electrode nodes are perturbed

    5

  • perturbation

    Perturbation Perturbation

    Jm =δUδx

    electrode boundary nodes are perturbed

    5

  • perturbation

    Rank-One Update Gómez-Laberge

    Jm =δUδx

    “the discrete form of the Lie derivative of the conductivity tensor”;the matrix rank-one update to the conductivity Jacobian due to FEM

    node movement

    5

  • fréchet derivative for tangential movement

    Crabb, Boyle

    accounts for contact impedance zc effectsin the Complete Electrode Model

    δU = Jmh+ O(h2)

    Jm h =1zc

    ∫∂E(h · υ∂E)(Um − u)(Vm − v)ds

    Um

    u

    Vm

    v

    zcυ∂E

    Dardé J, Hakula H, Hyvönen N, et al. Inverse Problems and Imaging 6(3):399–421, 20126

  • fréchet derivative for tangential movement

    Crabb, Boyle

    accounts for contact impedance zc effectsin the Complete Electrode Model

    δU = Jmh+ O(h2)

    Jm h =1zc

    ∫∂E(h · υ∂E)(Um − u)(Vm − v)ds

    Um

    u

    Vm

    vzc

    υ∂E

    Dardé J, Hakula H, Hyvönen N, et al. Inverse Problems and Imaging 6(3):399–421, 20126

  • fréchet derivative for tangential movement

    Boyle*

    What if the contact impedance zc units are wrong:[Ω·m] rather than [Ω]?

    7

  • contact impedance zc for the m+ electrode

    10−14 10−10 10−6 10−2 102 106 1010−1

    −0.5

    0

    0.5

    1

    zc [Ω·m]

    J m,x

    Naïve perturbationperturbationGómez-LabergeBoyle, CrabbBoyle*

    hmax = 0.1 m deℓ = 0.2 m plot for m+

    8

  • electrode diameter deℓ for the m+ electrode

    10−2 10−1−1

    −0.5

    0

    0.5

    1

    deℓ [m]

    J m,x

    Naïve perturbationperturbationGómez-LabergeBoyle, CrabbBoyle*

    hmax = 0.1 m zc = 0.02 Ω·m plot for m+

    9

  • mesh density hmax for the m+ electrode

    10−0.8 10−0.6 10−0.4 10−0.2 100−1

    −0.5

    0

    0.5

    1

    hmax [m]

    J m,x

    Naïve perturbationperturbationGómez-LabergeBoyle, CrabbBoyle*

    deℓ = 0.2 m zc = 0.02 Ω·m plot for m+

    10

  • discussion

    What does this mean for movement solutions?

    ∙ Fréchet deriv. is fast(forward solutions reused from adjoint method/conductivity)

    ∙ Fréchet deriv. magnitudes differ from perturbation methods(sign is correct/stable;hyper-parameter λ and/or line search α values will be different)(contact impedance units?)

    ∙ Fréchet deriv. results collapse for small contact impedancezc ≪ Ωσ , and more sensitive to mesh density hmax thanconductivity solutions(use “rank-one update” method when necessary?)

    11

  • Questions?

    12

  • contact impedance zc for the s- electrode

    10−14 10−10 10−6 10−2 102 106 1010−1

    −0.5

    0

    0.5

    1

    zc [Ω·m]

    J m,x

    Naïve perturbationperturbationGómez-LabergeBoyle, CrabbBoyle*

    hmax = 0.1 m deℓ = 0.2 m plot for s-

    13

  • electrode diameter deℓ for the s- electrode

    10−2 10−1−1

    −0.5

    0

    0.5

    1

    deℓ [m]

    J m,x

    Naïve perturbationperturbationGómez-LabergeBoyle, CrabbBoyle*

    hmax = 0.1 m zc = 0.02 Ω·m plot for s-

    14

  • mesh density hmax for the s- electrode

    10−0.8 10−0.6 10−0.4 10−0.2 100−1

    −0.5

    0

    0.5

    1

    hmax [m]

    J m,x

    Naïve perturbationperturbationGómez-LabergeBoyle, CrabbBoyle*

    deℓ = 0.2 m zc = 0.02 Ω·m plot for s-

    15