Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

35
Environmental Controls Environmental Controls I/IG I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass

Transcript of Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Page 1: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Environmental Controls I/IGEnvironmental Controls I/IGEnvironmental Controls I/IGEnvironmental Controls I/IG

Lecture 9Heat Flow in Opaque Materials

Thermal Mass

Page 2: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Conductive Heat FlowConductive Heat Flow

Conductive Heat Flow through opaque materials:

Q= U x A x ΔT

Q: heat flow (Btuh)U: transmission coefficient (Btu/h-ºF-ft2)A: area (ft2)ΔT: temperature difference (Ti-To)

Page 3: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Transmission CoefficientTransmission Coefficient

Transmission Coefficient (U):

U= 1/ΣR

U: transmission coefficient (Btu/h-ºF-ft2)ΣR: sum of resistance values (R-values) for layers of a construction assembly

Page 4: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Summing R-valuesSumming R-valuesSum of R-values (ΣR):

ΣR= 1/hO+R1+R2+R3+…+1/hI

hO,hI: film surface conductance coefficients

R1,R2,R3,…: Resistance values (R-values) for each layer of a construction

assembly

Page 5: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Air FilmsAir Films

Film surface conductance coefficient

Outdoor air film: R= 1/hO

Indoor air film: R=1/hI

Page 6: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Finding hFinding hOO and h and hII – – EmittanceEmittance

Emittance(ε): absorption of radiant heat

S: p.1570, T.E.3B

Page 7: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Finding hFinding hOO and h and hII

Film surface conductance coefficient (S: p. 158, T4.3)

Position of Surface

Direction of Heat FlowEmittance

Air Motion

S: p. 1570, T.E.3B

Page 8: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Finding hFinding hOO and h and hII – – EmittanceEmittance

Emittance(ε): absorption of radiant heat

Effective Emittance (εeff):

1/εeff=1/ε1+1/ε2-1

S: p.1570, T.E.3B

Page 9: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

R-values for Enclosed Air R-values for Enclosed Air CavitiesCavities

Film surface conductance coefficient (S: p. 161, T4.4)

S: p. 1571, T.E.1

Emittance

Position of Air Space

Air Space Width

Air Space Temperatu

reDirection

of Heat Flow

Page 10: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

R-values For Solid MaterialsR-values For Solid Materials

Table 4.2 Thermal Properties of Typical Building and Insulating MaterialsDensity

ConductanceConductivity

Resistance

S: p. 1549, T. E.1

Page 11: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Conductivity and Conductivity and ConductanceConductance

Conductivity (k) heat flow through a material per unit thickness

Conductance (C): heat flow through a material of stated thickness

C=k/x

where x= unit thickness (in.)

Page 12: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Conductivity and Conductivity and ConductanceConductance

Conductivity vs. Conductance

1’

1’

1”

1ºF

x”

1ºF

Conductivity k=0.25 Btuh

Say x=4”

Conductance C=k/x=0.25/4”=0.0625 Btuh

S: p. 182, F.7.8

Example 1

Page 13: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Converting to ResistanceConverting to Resistance

Resistance (R): measure of resistance to the passage of heat (h-ft2-ºF/Btu)

R=1/C or R=x/k

Page 14: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Converting to ResistanceConverting to Resistance

Conductivity vs. Conductance

1’

1’

1”

1ºF

x”

1ºF

Conductivity k=0.25 BtuhResistance R=1/k=1/0.25= 4

Say x=4”

Conductance C=k/x=0.25/4”=0.0625 BtuhResistance R=x/k=4/0.25=16

Example 1 (cont.)

S: p. 182, F.7.8

Page 15: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Table 4.2 Thermal Properties of Typical Building and Insulating Materials

Thermal Properties TableThermal Properties Table

S: p. 1522-3, T.E.1

Page 16: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

U-Value CalculationU-Value Calculation

Wall 1indoor air film½” gypsum board2”x4” nominal stud (pine) w/3.5” Ins.½” fiberboardwood shingles (16” long, 12” exposure)outdoor air filmSection View

Page 17: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

At AtInsulation Frame

Component (RI) (RF) Ref.

U-Value CalculationU-Value Calculation

indoor air film 0.68 0.68 T.E.3A

½” gypsum board 0.45 0.45 T.E.1

2x4 stud (3.5” pine) n.a. 4.35 T.E.1

3.5” Insulation 13.00 n.a. T.E.1

½” fiberboard 1.32 1.32 T.E.1

wood shingles 1.19 1.19 T.E.1

outdoor air film 0.17 0.17 T.E.3A

Totals ΣRI 16.81 ΣRF 8.16

UI 0.059 UF 0.123

Page 18: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Finding Indoor Air Film Coefficient Finding Indoor Air Film Coefficient –h–hII

Film surface conductance coefficient (S: p. 158, T4.3)

S: p. 1570, T.E. 3A

Indoor air filmVertical surfaceHorizontal heat flowNon-reflective surface

hI=1.46R=0.68

Page 19: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

At AtInsulation Frame

Component (RI) (RF) Ref.

U-Value CalculationU-Value Calculation

indoor air film 0.68 0.68 T.E.3A

½” gypsum board 0.45 0.45 T.E.1

2x4 stud (3.5” pine) n.a. 4.35 T.E.1

3.5” Insulation 13.00 n.a. T.E.1

½” fiberboard 1.32 1.32 T.E.1

wood shingles 1.19 1.19 T.E.1

outdoor air film 0.17 0.17 T.E.3A

Totals ΣRI 16.81 ΣRF 8.16

UI 0.059 UF 0.123

Page 20: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Finding Gypsum Board R-Finding Gypsum Board R-valuevalue

Table 4.2 Thermal Properties of Typical Building and Insulating Materials

½” Gypsum Board

R=0.45

S: p. 1549, T.E.1

Page 21: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

At AtInsulation Frame

Component (RI) (RF) Ref.

U-Value CalculationU-Value Calculation

indoor air film 0.68 0.68 T.E.3A

½” gypsum board 0.45 0.45 T.E.1

2x4 stud (3.5” pine) n.a. 4.35 T.E.1

3.5” Insulation 13.00 n.a. T.E.1

½” fiberboard 1.32 1.32 T.E.1

wood shingles 1.19 1.19 T.E.1

outdoor air film 0.17 0.17 T.E.3A

Totals ΣRI 16.81 ΣRF 8.16

UI 0.059 UF 0.123

Page 22: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Table 4.2 Thermal Properties of Typical Building and Insulating Materials

Finding Framing R-valueFinding Framing R-valueNominal 2x4 Pine stud depth is 3.5”Ravg=(1.35+1.11)/2=1.23/inch

R=3.5x1.23 =4.35

S: p. 1567, T.E.1

Page 23: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

At AtInsulation Frame

Component (RI) (RF) Ref.

U-Value CalculationU-Value Calculation

indoor air film 0.68 0.68 T.E.3A

½” gypsum board 0.45 0.45 T.E.1

2x4 stud (3.5” pine) n.a. 4.35 T.E.1

3.5” Insulation 13.00 n.a. T.E.1

½” fiberboard 1.32 1.32 T.E.1

wood shingles 1.19 1.19 T.E.1

outdoor air film 0.17 0.17 T.E.3A

Totals ΣRI 16.81 ΣRF 8.16

UI 0.059 UF 0.123

Page 24: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Table 4.2 Thermal Properties of Typical Building and Insulating Materials

Thermal Properties TableThermal Properties Table

S: p. 1522-3, T.E.1

3.5” InsulationMineral Fiber

R=13.00

Page 25: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

At AtInsulation Frame

Component (RI) (RF) Ref.

U-Value CalculationU-Value Calculation

indoor air film 0.68 0.68 T.E.3A

½” gypsum board 0.45 0.45 T.E.1

2x4 stud (3.5” pine) n.a. 4.35 T.E.1

3.5” Insulation 13.00 n.a. T.E.1

½” fiberboard 1.32 1.32 T.E.1

wood shingles 1.19 1.19 T.E.1

outdoor air film 0.17 0.17 T.E.3A

Totals ΣRI 16.81 ΣRF 8.16

UI 0.059 UF 0.123

Page 26: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Finding Fiberboard R-valueFinding Fiberboard R-value

Table 4.2 Thermal Properties of Typical Building and Insulating Materials

½” Fiberboard

R=1.32

S: p. 1549, T.E.1

Page 27: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

At AtInsulation Frame

Component (RI) (RF) Ref.

U-Value CalculationU-Value Calculation

indoor air film 0.68 0.68 T.E.3A

½” gypsum board 0.45 0.45 T.E.1

2x4 stud (3.5” pine) n.a. 4.35 T.E.1

3.5” Insulation 13.00 n.a. T.E.1

½” fiberboard 1.32 1.32 T.E.1

wood shingles 1.19 1.19 T.E.1

outdoor air film 0.17 0.17 T.E.3A

Totals ΣRI 16.81 ΣRF 8.16

UI 0.059 UF 0.123

Page 28: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Table 4.2 Thermal Properties of Typical Building and Insulating Materials

Finding Wood Shingle R-Finding Wood Shingle R-valuevalue

Wood shingles (16”, 12” exposure)

R=1.19

S: p. 1567, T.E.1

Page 29: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

At AtInsulation Frame

Component (RI) (RF) Ref.

U-Value CalculationU-Value Calculation

indoor air film 0.68 0.68 T.E.3A

½” gypsum board 0.45 0.45 T.E.1

2x4 stud (3.5” pine) n.a. 4.35 T.E.1

3.5” Insulation 13.00 n.a. T.E.1

½” fiberboard 1.32 1.32 T.E.1

wood shingles 1.19 1.19 T.E.1

outdoor air film 0.17 0.17 T.E.3A

Totals ΣRI 16.81 ΣRF 8.16

UI 0.059 UF 0.123

Page 30: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Finding Outdoor Air Film Finding Outdoor Air Film Coefficient--hCoefficient--hOO

Film surface conductance coefficient (S: p. 158, T4.3)

S: p. 1570, T.E.3A

Outdoor air filmWinter WindHorizontal heat flowNon-reflective surface

hO=6.0R=0.17

Page 31: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

At AtInsulation Frame

Component (RI) (RF) Ref.

U-Value CalculationU-Value Calculation

indoor air film 0.68 0.68 T.E.3A

½” gypsum board 0.45 0.45 T.E.1

2x4 stud (3.5” pine) n.a. 4.35 T.E.1

3.5” Insulation 13.00 n.a. T.E.1

½” fiberboard 1.32 1.32 T.E.1

wood shingles 1.19 1.19 T.E.1

outdoor air film 0.17 0.17 T.E.3A

Totals ΣRI 16.81 ΣRF 8.16

UI 0.059 UF 0.123

Page 32: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

At AtInsulation Frame

Component (RI) (RF) Ref.

U-Value CalculationU-Value Calculation

indoor air film 0.68 0.68 T.E.3A

½” gypsum board 0.45 0.45 T.E.1

2x4 stud (3.5” pine) n.a. 4.35 T.E.1

3.5” Insulation 13.00 n.a. T.E.1

½” fiberboard 1.32 1.32 T.E.1

wood shingles 1.19 1.19 T.E.1

outdoor air film 0.17 0.17 T.E.3A

Totals ΣRI 16.81 ΣRF 8.16

UI 0.059 UF 0.123U= 1/ΣR

Page 33: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

At AtInsulation Frame

Component (RI) (RF)

U-Value — Overall Average U-Value — Overall Average

Totals ΣRI 16.81 ΣRF 8.16

UI 0.059 UF 0.123

15% framing:

UAVG=0.85(0.059)+0.15(0.123)=0.069

Page 34: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Density WeightComponent #/cf #/sf

Thermal MassThermal Mass

indoor air film 0.0 0.00

½” gypsum board 50.0 2.08

3-½” insulation 1.2 0.35

½” fiberboard 18.0 0.75

wood shingles 26.6 1.11

outdoor air film 0.0 0.004.29 #/sf

Weight (#/sf)=Density (#/cf) x Thickness (ft.)

½” Gyp. Bd. =50#/cf x 0.0416’= 2.08 #/sf

Page 35: Environmental Controls I/IG Lecture 9 Heat Flow in Opaque Materials Thermal Mass.

Insert Microclimate critiques hereInsert Exam results here