Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

37
Environmental Controls Environmental Controls I/IG I/IG Lecture 13 Solar Geometry Shading Strategies

Transcript of Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Page 1: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Environmental Controls I/IGEnvironmental Controls I/IG

Lecture 13Solar Geometry

Shading Strategies

Page 2: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sun PositionSun Position

Can be described by two angles:

Altitude

Azimuth

S: p. 1514, T.C.12

Page 3: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Solar AnglesSolar Angles

Describe the sun position relative to a vertical surface

Page 4: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Solar Altitude: Solar Altitude: ββ (beta) (beta)

Vertical angle to sun position

Page 5: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Solar Azimuth: Solar Azimuth: ΦΦ (phi) (phi)

Horizontal bearing angle from south

Page 6: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Surface Azimuth: Surface Azimuth: ΨΨ (psi) (psi)

Surface horizontal bearing angle from south

Page 7: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Surface Solar Azimuth: Surface Solar Azimuth: γγ (gamma)(gamma)

Angle between solar and surface azimuths

γ = Φ - Ψ

Page 8: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sign ConventionsSign Conventions

Angles east of south are negative

Angles west of south are positive

+ -

S

-90º90º

-45º45º

Page 9: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Calculating Surface Solar Calculating Surface Solar AzimuthAzimuth

γ = Φ – Ψ

For example:

Building façade is oriented south east (Ψ =-45º)

Solar azimuth (ϕ) is 30º west of south

γ = 30º – (-45º) = 75º

Note: |γ|≥ 90º, façade in shade

-45º30º

Page 10: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Profile Angle: Profile Angle: ΩΩ (omega) (omega)

Defines limits of shade conditions

For horizontal projections:

TAN(Ω)=TAN(β) / COS(Y)

Page 11: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Profile Angle: Profile Angle: ΩΩ (omega) (omega)

For horizontal projections:

SH=PH TAN(Ω)

where,PH: width of enclosing side of

horizontal projection

SH: height of shadow below horizontal projection

Page 12: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Profile Angle: Profile Angle: ΩΩ (omega) (omega)

Defines limits of shade conditions

For vertical projections:

TAN(Ω)=TAN(Y)

Page 13: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Profile Angle: Profile Angle: ΩΩ (omega) (omega)

For vertical projections:

Sw=Pv TAN(Y)

where,Pv: width of enclosing side of vertical projection

Sw: width of shadow beyond vertical projection

Page 14: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sizing Horizontal ProjectionsSizing Horizontal ProjectionsEstablish fenestration pattern and determine size of openings

Page 15: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sizing Horizontal ProjectionsSizing Horizontal Projections

Determine cut off date and time for solar penetration

Mar 21 @10 AM solar time

Determine surface azimuth

Due south, Ψ=0º

Determine required shadow height

SH=6’

?

Page 16: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sizing Horizontal ProjectionsSizing Horizontal ProjectionsEstablish profile (Ω) angles for the solstices at solar noon using surface solar azimuth (Y = Φ –Ψ).

At solar noon (Φ=0º) and for L=40º, Ψ=0º:

12/21 β=90-23.5-L=26.5ºTAN(Ωw)=TAN(β)/COS(Y)

Ωw=26.5º

6/21 β=90+23.5-L=73.5ºTAN(Ωs)=TAN(β)/COS(Y)

Ωs=73.5º

Page 17: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sizing Horizontal ProjectionsSizing Horizontal ProjectionsEstablish profile (Ω) angles for cut off date and time using surface solar azimuth (Y = Φ –Ψ).

At 10 AM solar time and for L=40º, Ψ=0º:

Page 18: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sizing Horizontal Sizing Horizontal ProjectionsProjections

Mar 21 @10 AM Solar Timeβ= 41.6º Φ= -41.9º

Y=Φ-ΨY=-41.9º-0º=-41.9º

S: p. 1514, T.C.12

Page 19: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sizing Horizontal ProjectionsSizing Horizontal ProjectionsEstablish profile (Ω) angles for cut off date and time using surface solar azimuth (Y = Φ –Ψ).

At 10 AM solar time and for L=40º, Ψ=0º:

3/21 β=41.6º Y=-41.9ºTAN(Ω)=TAN(β)/COS(Y)

TAN(Ω)= 0.888/0.744= 1.19

Ω=50º

Page 20: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sizing Horizontal ProjectionsSizing Horizontal Projections

Given SH = 6’ and

SH=PH Tan(Ω)

Solve for PH

PH=SH/TAN(Ω)

PH=6/1.19=5.04’ ~ 5’-0 ½”

say 5’-0”

Page 21: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Solar EnvelopeSolar EnvelopeReduce horizontal projections by adding horizontal louvers in a vertical screen

Ω

LouverSpacing

Ph

Sh

Page 22: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sizing Horizontal ProjectionsSizing Horizontal Projections

ΩS

H

S

Spacing (S)= H/TAN(ΩS)

If H=12’’, then S=12/TAN(ΩS)=3.55” say 3½”

Note: method does not include louver thickness

Use the summer solstice profile angle (ΩS) to determine spacing of vertical louvers

Page 23: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sizing Horizontal ProjectionsSizing Horizontal Projections

ΩS

H

S

Spacing (S)= H/TAN(ΩS)

If H=12’’, then S=12/TAN(ΩS)=3.55” say 3½”

Note: method does not include louver thickness

Use the summer solstice profile angle (ΩS) to determine spacing of reverse inclined louvers

2S

Page 24: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Lateral PenetrationLateral Penetration

Mar 21 at 10 AM solar time

β

When Y≠0º, lateral penetration occurs at an angle = β

Page 25: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Lateral Penetration Lateral Penetration SolutionsSolutions

Extend projection bilaterally

β

Page 26: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Lateral Penetration Lateral Penetration SolutionsSolutions

Install vertical component bilaterally

Page 27: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

ΩS

Ω

ΩW

Critical Angle AnalysisCritical Angle Analysis

Critical angles define solar aperture height (SAH)

SAH

Page 28: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sizing Vertical ProjectionsSizing Vertical Projections

SW=|PVTAN(Y)|

or

PV=|SW/TAN(Y)|

Page 29: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Sizing Vertical ProjectionsSizing Vertical Projections

On Mar 21 @ 10 AM (Y=-41.9º), if SW=6’

what should PV be to shade window

PV=|SW/TAN(Y)|

PV=|6/-1.115|=5.4’ ~5’-5”

Page 30: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Shading Shading StrategiesStrategies

Page 31: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Shading Devices – OverviewShading Devices – Overview

South Façade: Horizontal overhang or Brise-soleil

San Cristobal Stables

The Capital (Chandigarh)

Page 32: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Shading Devices –OverviewShading Devices –Overview

East/West Façade: Vertical fins angled to the north and/or Brise-soleil

Keio University Graduate School Research Center

Monastery of Ste Marie de La Tourette

Page 33: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Shading Devices –OverviewShading Devices –Overview

North Façade: Vertical fins (used in hot climates only)

L: p. 559 fig. 17.10b

Phoenix Central Library

Page 34: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Shading Devices – TectonicsShading Devices – Tectonics

VerticalLouvers or Screens

John Deere Headquarters, Moline IL Jewett Art Center, Wellesley, MA

Page 35: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Shading Devices – TectonicsShading Devices – Tectonics

HorizontalSolid and louvered planes, projections or recesses

Paimio Sanatorium, Finland

Getty Center Los Angeles, CA

Page 36: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.

Shading Devices –Shading Devices –TectonicsTectonics

Sculptural FormThickness Projections Screens

Beach House, Lido Shores, FL

Unity Temple, Oak Park, IL

Obayashi Tokyo Design Center

Reynolds Aluminum Building, Detroit, MI

Page 37: Environmental Controls I/IG Lecture 13 Solar Geometry Shading Strategies.