Electroweak Precision Physics

54
Electroweak Precision Physics Georg Weiglein IPPP Durham Durham, 01/2005 1. Introduction 2. Electroweak precision observables 3. Precision tests: Standard Model and Supersymmetry 4. Conclusions Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.1

Transcript of Electroweak Precision Physics

Page 1: Electroweak Precision Physics

Electroweak Precision Physics

Georg Weiglein

IPPP Durham

Durham, 01/2005

1. Introduction

2. Electroweak precision observables

3. Precision tests: Standard Model and Supersymmetry

4. Conclusions

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.1

Page 2: Electroweak Precision Physics

1. Introduction

Electroweak precision measurements:

MW[ GeV] = 80.425 ± 0.034 0.04%

sin2 θlepteff = 0.23150 ± 0.00016 0.07%

ΓZ[ GeV] = 2.4952 ± 0.0023 0.09%

MZ[ GeV] = 91.1875 ± 0.0021 0.002%

Gµ[ GeV−2] = 1.16637(1) 10−5 0.0009%

mt[ GeV] = 178.0 ± 4.3 2.4%

. . .

Quantum effects of the theory:

Loop corr. to “pseudo-observables” MW, sin2 θeff , . . . : ∼ O(1%)

⇒ EW prec. measurements test quantum effects of the theory

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.2

Page 3: Electroweak Precision Physics

1. Introduction

Electroweak precision measurements:

MW[ GeV] = 80.425 ± 0.034 0.04%

sin2 θlepteff = 0.23150 ± 0.00016 0.07%

ΓZ[ GeV] = 2.4952 ± 0.0023 0.09%

MZ[ GeV] = 91.1875 ± 0.0021 0.002%

Gµ[ GeV−2] = 1.16637(1) 10−5 0.0009%

mt[ GeV] = 178.0 ± 4.3 2.4%

. . .

Quantum effects of the theory:

Loop corr. to “pseudo-observables” MW, sin2 θeff , . . . : ∼ O(1%)

⇒ EW prec. measurements test quantum effects of the theory

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.2

Page 4: Electroweak Precision Physics

1. Introduction

Electroweak precision measurements:

MW[ GeV] = 80.425 ± 0.034 0.04%

sin2 θlepteff = 0.23150 ± 0.00016 0.07%

ΓZ[ GeV] = 2.4952 ± 0.0023 0.09%

MZ[ GeV] = 91.1875 ± 0.0021 0.002%

Gµ[ GeV−2] = 1.16637(1) 10−5 0.0009%

mt[ GeV] = 178.0 ± 4.3 2.4%

. . .

Quantum effects of the theory:

Loop corr. to “pseudo-observables” MW, sin2 θeff , . . . : ∼ O(1%)

⇒ EW prec. measurements test quantum effects of the theoryElectroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.2

Page 5: Electroweak Precision Physics

Comparison of electroweak precision data withtheory predictions:

EW precision data: Theory:MZ, MW, sin2 θlept

eff , . . . SM, MSSM, . . .

⇓Test of theory at quantum level: sensitivity to loop corrections

H

⇓Indirect constraints on unknown parameters: MH, . . .

Effects of “new physics”?Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.3

Page 6: Electroweak Precision Physics

Example: indirect determination of mt fromprecision data vs. direct measurement

Indirect det. of mt from precision data: mt = 180.3+11.7−9.2 GeV

Direct measurement: mt = 178.0 ± 4.3 GeV

Leading corrections to precision observables:∼ m2

t

∼ ln MH

⇒ Very high accuracy of measurements and theoreticalpredictions needed

Theoretical uncertainties:− unknown higher-order corrections− experimental error of input parameters: mt, ∆αhad, . . .

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.4

Page 7: Electroweak Precision Physics

Example: indirect determination of mt fromprecision data vs. direct measurement

Indirect det. of mt from precision data: mt = 180.3+11.7−9.2 GeV

Direct measurement: mt = 178.0 ± 4.3 GeV

Leading corrections to precision observables:∼ m2

t

∼ ln MH

⇒ Very high accuracy of measurements and theoreticalpredictions needed

Theoretical uncertainties:− unknown higher-order corrections− experimental error of input parameters: mt, ∆αhad, . . .

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.4

Page 8: Electroweak Precision Physics

Example: indirect determination of mt fromprecision data vs. direct measurement

Indirect det. of mt from precision data: mt = 180.3+11.7−9.2 GeV

Direct measurement: mt = 178.0 ± 4.3 GeV

Leading corrections to precision observables:∼ m2

t

∼ ln MH

⇒ Very high accuracy of measurements and theoreticalpredictions needed

Theoretical uncertainties:− unknown higher-order corrections− experimental error of input parameters: mt, ∆αhad, . . .

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.4

Page 9: Electroweak Precision Physics

Example: indirect determination of mt fromprecision data vs. direct measurement

Indirect det. of mt from precision data: mt = 180.3+11.7−9.2 GeV

Direct measurement: mt = 178.0 ± 4.3 GeV

Leading corrections to precision observables:∼ m2

t

∼ ln MH

⇒ Very high accuracy of measurements and theoreticalpredictions needed

Theoretical uncertainties:− unknown higher-order corrections− experimental error of input parameters: mt, ∆αhad, . . .

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.4

Page 10: Electroweak Precision Physics

Observables vs. “pseudo-observables”:

Couplings, masses, mixing angles, etc. are not (directly)physical observables ⇒ “pseudo-observables”

Actual observables: σ, BRs, asymmetries, . . .

Need deconvolution procedure (unfolding) to determinemasses, partial widths, etc. from measured cross sections

⇒ pseudo-observables are not strictly model-independent

What is a suitable definition of model parameters?need some compromise between− simple interpretation within given model− model independence

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.5

Page 11: Electroweak Precision Physics

Observables vs. “pseudo-observables”:

Couplings, masses, mixing angles, etc. are not (directly)physical observables ⇒ “pseudo-observables”

Actual observables: σ, BRs, asymmetries, . . .

Need deconvolution procedure (unfolding) to determinemasses, partial widths, etc. from measured cross sections

⇒ pseudo-observables are not strictly model-independent

What is a suitable definition of model parameters?need some compromise between− simple interpretation within given model− model independence

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.5

Page 12: Electroweak Precision Physics

Experimental determination of model parameters(masses, couplings, . . . ):

Particle masses: relatively small model dependence

⇒ The experimental value of MZ (slightly) depends on thevalue of the SM Higgs mass(δMZ = ±0.2 MeV for 100 GeV ≤ MH ≤ 1 TeV)

Couplings, mixing angles, etc.: relatively large modeldependence

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.6

Page 13: Electroweak Precision Physics

Experimental determination of model parameters(masses, couplings, . . . ):

Particle masses: relatively small model dependence

⇒ The experimental value of MZ (slightly) depends on thevalue of the SM Higgs mass(δMZ = ±0.2 MeV for 100 GeV ≤ MH ≤ 1 TeV)

Couplings, mixing angles, etc.: relatively large modeldependence

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.6

Page 14: Electroweak Precision Physics

Sensitivity of different (pseudo-)observables tothe Higgs mass in the SM

[LEPEWWG ’04]

150

175

200

10 102

103

mH [GeV]

mt

[GeV

]Preliminary68 % CL

sin2θleptsin2θeff

mW Γl

Rb

⇒ highest sensitivity from sin2 θeff and MW

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.7

Page 15: Electroweak Precision Physics

Comparison of current and anticipated futureexperimental errors

Present errors vs. Run II of Tevatron, LHC, and ILC with andwithout low-energy running mode (GigaZ):

now Tevatron LHC ILC GigaZδ sin2 θeff(×105) 16 — 14–20 — 1.3

δMW [MeV] 34 20 15 10 7δmt [GeV] 4.3 2.5 1–2 0.1 0.1δmh [MeV] — — 200 50 50

⇒ Large improvement at next generation of colliders

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.8

Page 16: Electroweak Precision Physics

2. Electroweak precision observables

Sensitivity to quantum effects (loop corrections) of newphysics:

Precision measurements resolve %-level loop effects:MW, sin2 θeff , ΓZ, . . .

Loop-induced processes ⇔ new physics contributiondoesn’t compete with large SM lowest-order prediction:(g − 2)µ, b → sγ, Bs → µ+µ−, EDMs, . . .

Future precision measurements, possibly very large loopeffects: mh, other Higgs-sector observables

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.9

Page 17: Electroweak Precision Physics

2. Electroweak precision observables

Sensitivity to quantum effects (loop corrections) of newphysics:

Precision measurements resolve %-level loop effects:MW, sin2 θeff , ΓZ, . . .

Loop-induced processes ⇔ new physics contributiondoesn’t compete with large SM lowest-order prediction:(g − 2)µ, b → sγ, Bs → µ+µ−, EDMs, . . .

Future precision measurements, possibly very large loopeffects: mh, other Higgs-sector observables

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.9

Page 18: Electroweak Precision Physics

2. Electroweak precision observables

Sensitivity to quantum effects (loop corrections) of newphysics:

Precision measurements resolve %-level loop effects:MW, sin2 θeff , ΓZ, . . .

Loop-induced processes ⇔ new physics contributiondoesn’t compete with large SM lowest-order prediction:(g − 2)µ, b → sγ, Bs → µ+µ−, EDMs, . . .

Future precision measurements, possibly very large loopeffects: mh, other Higgs-sector observables

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.9

Page 19: Electroweak Precision Physics

Theoretical predictions for MW, sin2 θeff:

Comparison of prediction for muon decay with experiment (Fermiconstant Gµ)

⇒ M2W

(

1 − M2W

M2Z

)

=πα√2Gµ

(1 + ∆r) ,

mloop corrections

⇒ Theo. prediction for MW in terms of MZ, α, Gµ, ∆r(mt, MH, . . .)

Effective couplings at the Z resonance:

⇒ sin2 θeff =1

4

(

1 − RegV

gA

)

=

(

1 − M2W

M2Z

)

Re κl(s = M2Z)

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.10

Page 20: Electroweak Precision Physics

Theoretical predictions for MW, sin2 θeff:

Comparison of prediction for muon decay with experiment (Fermiconstant Gµ)

⇒ M2W

(

1 − M2W

M2Z

)

=πα√2Gµ

(1 + ∆r) ,

mloop corrections

⇒ Theo. prediction for MW in terms of MZ, α, Gµ, ∆r(mt, MH, . . .)

Effective couplings at the Z resonance:

⇒ sin2 θeff =1

4

(

1 − RegV

gA

)

=

(

1 − M2W

M2Z

)

Re κl(s = M2Z)

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.10

Page 21: Electroweak Precision Physics

Theoretical predictions for MW, sin2 θeff:

Current status in the SM: complete two-loop result known for MW,fermionic two-loop corrections known for sin2 θeff

Necessary diagrams for evaluation of 2-loop corrections to sin2 θeff :

Renormalisation: δM 2W = ReΣW

T(2)(M2W) + . . .

⇒ 2-loop self-energies with arbitrary momentum and masses

No analytical results available for general case⇒ numerical integration

Two-loop vertex diagrams:

two classes:top, light fermions

γ,Z,WW

W

W

γ,Z,W γ,Z

H

ZElectroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.11

Page 22: Electroweak Precision Physics

Evaluation with different methods

Top-quark contributions: expansion in M 2Z/m2

t

⇒ expansion up to (M 2Z/m2

t )5 yields intrinsic precision of 10−7

Light fermion contributions:

depend on only one variable ⇒ reduction to master integrals usingintegration by parts and Lorentz invariance identities[Chetyrkin, Tkachov ’81] [Gehrmann, Remiddi ’00] [Laporta ’00]

Analytical results for master integrals via differential equationsElectroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.12

Page 23: Electroweak Precision Physics

SM prediction for MW (complete 2-loop result)vs. experimental result

[M. Awramik, M. Czakon, A. Freitas, G.W. ’04]

200 400 600 800 1000MH [GeV]

80.25

80.3

80.35

80.4

80.45

MW

[GeV

]

MexpW

= 80.425 ± 0.034 GeV

SM prediction for MW

exp. lower bound on MH, MH = 114.4 GeV

Main source oftheo. uncertainty:δmt = 4.3 GeV

⇒ ∆MparaW ≈ 26 MeV,

∆ sin2 θparaeff ≈ 14× 10−5

⇒ Preference for light HiggsElectroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.13

Page 24: Electroweak Precision Physics

SM prediction for sin2 θeff (fermionic 2-loop result)vs. experimental result

100 300 500 700 900MH [GeV]

0.231

0.2315

0.232

0.2325

sin2 θ ef

f

exp. lower bound MH = 114.4 GeV

exp. value 0.23150 +/− 0.00016

prediction [M. Awramik, M. Czakon,

A. Freitas, G.W. ’04]

⇒ Preference for light Higgs

However: experimental value for sin2 θeff contains average overAl = 0.23098 ± 0.00026 (SLD) and A0,b

fb = 0.23210 ± 0.00030 (LEP)

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.14

Page 25: Electroweak Precision Physics

SM prediction for sin2 θeff (fermionic 2-loop result)vs. experimental result

100 300 500 700 900MH [GeV]

0.231

0.2315

0.232

0.2325

sin2 θ ef

f

exp. lower bound MH = 114.4 GeV

exp. value 0.23150 +/− 0.00016

prediction [M. Awramik, M. Czakon,

A. Freitas, G.W. ’04]

⇒ Preference for light Higgs

However: experimental value for sin2 θeff contains average overAl = 0.23098 ± 0.00026 (SLD) and A0,b

fb = 0.23210 ± 0.00030 (LEP)Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.14

Page 26: Electroweak Precision Physics

SM prediction for MW and sin2 θeff vs. current experimental result (LEP2/Tevatron) and

prospective accuracies at the LHC and a LC with low-energy option (GigaZ):

[J. Erler, S. Heinemeyer, W. Hollik, G.W., P. Zerwas ’00]

80.25 80.30 80.35 80.40 80.45 80.50MW [GeV]

0.23125

0.23150

0.23175

0.23200

0.23225

0.23250

sin2 θ ef

f

presently

∆α

mtMH =

180 GeV

150 GeV

120 GeV

SM@GigaZ

68% CL:

LEP/SLC/Tevatron

LHC/LC

GigaZ

⇒ Highly sensitive test of electroweak theory:improved accuracy of observables and input parameters

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.15

Page 27: Electroweak Precision Physics

The anomalous magnetic moment of the muon:(g − 2)µ ≡ 2aµ

Coupling of muon to magnetic field: µ − µ − γ coupling

u(p′)

[

γµF1(q2) +

i

2mµσµνqνF2(q

2)

]

u(p)Aµ F2(0) = (g−2)µ ≡ 2aµ

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.16

Page 28: Electroweak Precision Physics

aµ: experimental result vs. SM prediction

aexpµ − atheo

µ = (25.2 ± 9.2) × 10−10 : 2.7 σ .

Better agreement between theory and experiment possible inmodels of physics beyond the SM

Example: one-loop contributions of superpartners of fermionsand gauge bosons

µ

γ

µχi

νµ

χi

µ

γ

µµa

χ0j

µb

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.17

Page 29: Electroweak Precision Physics

SUSY contributions to aµ

One-loop SUSYcontribution (dashed),

two-loopchargino/neutralinocontributions(dash-dotted)

and the sum (full line)

forµ = M2 = MA ≡ MSUSY,mf = 1 TeV, tan β = 50:

[S. Heinemeyer, D. Stockinger, G. W. ’04]

0 50 100 150 200 250 300 350 400 450 500MSUSY [GeV]

0

5

10

15

20

25

30

a µ [10-1

0 ]

aµSUSY,1L

aµχ,2L

aµSUSY,1L+χ,2L

µ = M2 = MA = MSUSY, tanβ = 50

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.18

Page 30: Electroweak Precision Physics

Precision Higgs physics

Large coupling of Higgs to top quark

H

t

t

H

One-loop correction ∼ Gµm4t

⇒ MH depends sensitively on mt in all models where MH canbe predicted (SM: MH is free parameter)

SUSY as an example: ∆mt ≈ ±4 GeV ⇒ ∆mh ≈ ±4 GeV

⇒ Precision Higgs physics needs precision top physics(ILC: ∆mt

<∼ 0.1 GeV)

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.19

Page 31: Electroweak Precision Physics

Precision Higgs physics

Large coupling of Higgs to top quark

H

t

t

H

One-loop correction ∼ Gµm4t

⇒ MH depends sensitively on mt in all models where MH canbe predicted (SM: MH is free parameter)

SUSY as an example: ∆mt ≈ ±4 GeV ⇒ ∆mh ≈ ±4 GeV

⇒ Precision Higgs physics needs precision top physics(ILC: ∆mt

<∼ 0.1 GeV)

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.19

Page 32: Electroweak Precision Physics

Precision Higgs physics

Large coupling of Higgs to top quark

H

t

t

H

One-loop correction ∼ Gµm4t

⇒ MH depends sensitively on mt in all models where MH canbe predicted (SM: MH is free parameter)

SUSY as an example: ∆mt ≈ ±4 GeV ⇒ ∆mh ≈ ±4 GeV

⇒ Precision Higgs physics needs precision top physics(ILC: ∆mt

<∼ 0.1 GeV)Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.19

Page 33: Electroweak Precision Physics

Higgs mass bound in the MSSM:

⇒ Prediction for mh, mH, . . .

Tree-level result for mh, mH:

m2H,h =

1

2

[

M2A + M2

Z ±√

(M2A + M2

Z)2 − 4M2ZM2

A cos2 2β

]

⇒ mh ≤ MZ at tree levelMSSM tree-level bound (gauge sector): excluded by LEP!

Large radiative corrections (Yukawa sector, . . . ):

Yukawa couplings: e mt

2MWsW, e m2

t

MWsW, . . .

⇒ Dominant one-loop corrections: Gµm4t ln

(

mt1mt2

m2t

)

, O(100%) !Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.20

Page 34: Electroweak Precision Physics

Higgs mass bound in the MSSM:

Present status of mh prediction in the MSSM:

Complete one-loop + “almost complete” two-loop result available

Upper bound on mh:

‘Unconstrained’ MSSM: MA, tan β, 5 param. in t-b sector, µ, mg, M2

mh<∼ 136 GeV

[S. Heinemeyer, W. Hollik, G. W. ’99], [M. Frank, S. Heinemeyer, W. Hollik,

G. W. ’02] [G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. ’02]

for mt = 178 GeV, no theoretical uncertainties included Upperbound reduced by ≈ 6, 11, 8 GeV in mSUGRA, GMSB, AMSBscenarios [S. Ambrosanio, A. Dedes, S. Heinemeyer, S. Su, G. W. ’01]

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.21

Page 35: Electroweak Precision Physics

Higgs mass bound in the MSSM:

Present status of mh prediction in the MSSM:

Complete one-loop + “almost complete” two-loop result available

Upper bound on mh:

‘Unconstrained’ MSSM: MA, tan β, 5 param. in t-b sector, µ, mg, M2

mh<∼ 136 GeV

[S. Heinemeyer, W. Hollik, G. W. ’99], [M. Frank, S. Heinemeyer, W. Hollik,

G. W. ’02] [G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. ’02]

for mt = 178 GeV, no theoretical uncertainties included Upperbound reduced by ≈ 6, 11, 8 GeV in mSUGRA, GMSB, AMSBscenarios [S. Ambrosanio, A. Dedes, S. Heinemeyer, S. Su, G. W. ’01]

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.21

Page 36: Electroweak Precision Physics

Higgs mass bound in the MSSM:

Present status of mh prediction in the MSSM:

Complete one-loop + “almost complete” two-loop result available

Upper bound on mh:

‘Unconstrained’ MSSM: MA, tan β, 5 param. in t-b sector, µ, mg, M2

mh<∼ 136 GeV

[S. Heinemeyer, W. Hollik, G. W. ’99], [M. Frank, S. Heinemeyer, W. Hollik,

G. W. ’02] [G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. ’02]

for mt = 178 GeV, no theoretical uncertainties included

Upperbound reduced by ≈ 6, 11, 8 GeV in mSUGRA, GMSB, AMSBscenarios [S. Ambrosanio, A. Dedes, S. Heinemeyer, S. Su, G. W. ’01]

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.21

Page 37: Electroweak Precision Physics

Remaining theoretical uncertainties in prediction for mh:

[G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. ’02]

– From unknown higher-order corrections: ⇒ ∆mh ≈ ±3 GeV

– From input parameters: ∆mt ≈ ±4 GeV ⇒ ∆mh ≈ ±4 GeV

For 1-σ range of mt:

⇒ upper bound beyondmh = 140 GeV

LEP does not excludeany tan β value!

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.22

Page 38: Electroweak Precision Physics

Remaining theoretical uncertainties in prediction for mh:

[G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. W. ’02]

– From unknown higher-order corrections: ⇒ ∆mh ≈ ±3 GeV

– From input parameters: ∆mt ≈ ±4 GeV ⇒ ∆mh ≈ ±4 GeV

For 1-σ range of mt:

⇒ upper bound beyondmh = 140 GeV

LEP does not excludeany tan β value!

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.22

Page 39: Electroweak Precision Physics

3. Precision tests: Standard Model andSupersymmetry

Global fit in the SM

SM vs. MSSM

Fit to precision observables in the constrained MSSM(mSUGRA) with dark matter constraints

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.23

Page 40: Electroweak Precision Physics

Global fit to all data in the SM

0

1

2

3

4

5

6

10020 400

mH [GeV]

∆χ2

Excluded Preliminary

∆αhad =∆α(5)

0.02761±0.000360.02749±0.00012incl. low Q2 data

Theory uncertainty [LEPEWWG ’04]

Theoretical uncertainties:

− exp. error of input parameters:

mt, ∆αhad, . . .

⇒ large mt–MH correlation

− unknown higher-ordercorrections

⇒ “blue band”

New mt value, mt = 178.0 ± 4.3 GeV, new result for sin2 θeff

⇒ MH = 114+69−45 GeV, MH < 260 GeV, 95% C.L.

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.24

Page 41: Electroweak Precision Physics

Global fit to all data in the SM

0

1

2

3

4

5

6

10020 400

mH [GeV]

∆χ2

Excluded Preliminary

∆αhad =∆α(5)

0.02761±0.000360.02749±0.00012incl. low Q2 data

Theory uncertainty [LEPEWWG ’04]

Theoretical uncertainties:

− exp. error of input parameters:

mt, ∆αhad, . . .

⇒ large mt–MH correlation

− unknown higher-ordercorrections

⇒ “blue band”

New mt value, mt = 178.0 ± 4.3 GeV, new result for sin2 θeff

⇒ MH = 114+69−45 GeV, MH < 260 GeV, 95% C.L.

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.24

Page 42: Electroweak Precision Physics

Correlation between MH and mt in the fit:

[LEPEWWG ’04]

140

160

180

200

10 102

103

mH [GeV]

mt

[GeV

]

Excluded Preliminary (a)

High Q2 except mt

68% CL

mt (TEVATRON)

⇒ Precise knowledge of mt crucial for constraining MH

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.25

Page 43: Electroweak Precision Physics

Electroweak precision tests: SM vs. MSSM

Prediction for MW in the SM and the MSSM:[A. Djouadi, P. Gambino, S. Heinemeyer,

W. Hollik, C. Junger, G. W. ’97][S. Heinemeyer, W. Hollik, G. W. ’98][S. Heinemeyer, G. W. ’02]

160 165 170 175 180 185 190mt [GeV]

80.20

80.30

80.40

80.50

80.60

80.70

MW

[GeV

]

SM

MSSM

MH = 113 GeV

MH = 400 GeV

light SUSY

heavy SUSY

Heinemeyer, Weiglein ’04

SM: MH varied

MSSM: SUSY parameters varied

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.26

Page 44: Electroweak Precision Physics

Electroweak precision tests: SM vs. MSSM

Prediction for MW in the SM and the MSSM:[A. Djouadi, P. Gambino, S. Heinemeyer,

W. Hollik, C. Junger, G. W. ’97][S. Heinemeyer, W. Hollik, G. W. ’98][S. Heinemeyer, G. W. ’02]

160 165 170 175 180 185 190mt [GeV]

80.20

80.30

80.40

80.50

80.60

80.70

MW

[GeV

]

SM

MSSM

MH = 113 GeV

MH = 400 GeV

light SUSY

heavy SUSY

Heinemeyer, Weiglein ’04

experimental errors 68% CL:

LEP2/Tevatron (today)

SM: MH varied

MSSM: SUSY parameters varied

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.27

Page 45: Electroweak Precision Physics

Electroweak precision tests: SM vs. MSSM

Prediction for MW in the SM and the MSSM:[A. Djouadi, P. Gambino, S. Heinemeyer,

W. Hollik, C. Junger, G. W. ’97][S. Heinemeyer, W. Hollik, G. W. ’98][S. Heinemeyer, G. W. ’02]

160 165 170 175 180 185 190mt [GeV]

80.20

80.30

80.40

80.50

80.60

80.70

MW

[GeV

]

SM

MSSM

MH = 113 GeV

MH = 400 GeV

light SUSY

heavy SUSY

Heinemeyer, Weiglein ’04

experimental errors 68% CL:

LEP2/Tevatron (today)

Tevatron/LHC

LC+GigaZ

SM: MH varied

MSSM: SUSY parameters varied

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.28

Page 46: Electroweak Precision Physics

Prediction for MW, sin2 θeff in SM and MSSM:

80.20 80.25 80.30 80.35 80.40 80.45 80.50MW [GeV]

0.2305

0.2310

0.2315

0.2320

0.2325

sin2

θ eff

SM (mH = 114 ... 400 GeV)

mt = 169.4 ... 186.6 GeV

MSSM

Heinemeyer, Weiglein ’04

experimental errors:

LEP2/SLD/Tevatron

LHC/LC

GigaZ

[S. Heinemeyer, W. Hollik,G. W. ’04]

⇒ High sensitivityto deviations fromboth the SM andthe MSSM

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.29

Page 47: Electroweak Precision Physics

Prediction for MW, sin2 θeff in SM and MSSM:

80.20 80.25 80.30 80.35 80.40 80.45 80.50MW [GeV]

0.2305

0.2310

0.2315

0.2320

0.2325

sin2

θ eff

SM (mH = 114 ... 400 GeV)

mt = 169.4 ... 186.6 GeV

MSSM

Heinemeyer, Weiglein ’04

experimental errors:

LEP2/SLD/Tevatron

LHC/LC

GigaZ

[S. Heinemeyer, W. Hollik,G. W. ’04]

⇒ High sensitivityto deviations fromboth the SM andthe MSSM

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.29

Page 48: Electroweak Precision Physics

χ2 fit in mSUGRA with dark matter constraints:MW, sin2 θeff , (g − 2)µ, BR(b → sγ)

[J. Ellis, S. Heinemeyer, K. Olive, G. W. ’04]tan β = 10:

0 200 400 600 800 1000m1/2 [GeV]

0

2

4

6

8

10

χ2 (tod

ay)

CMSSM, µ > 0

tanβ = 10, A0 = 0

tanβ = 10, A0 = +m1/2

tanβ = 10, A0 = -m1/2

tanβ = 10, A0 = +2 m1/2

tanβ = 10, A0 = -2 m1/2

⇒ very good descriptionof the data

preference for relativelysmall mass values

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.30

Page 49: Electroweak Precision Physics

χ2 fit in mSUGRA with dark matter constraints:MW, sin2 θeff , (g − 2)µ, BR(b → sγ)

[J. Ellis, S. Heinemeyer, K. Olive, G. W. ’04]tan β = 50:

200 400 600 800 1000 1200 1400 1600 1800 2000m1/2 [GeV]

0

2

4

6

8

10

12

14

χ2 (tod

ay)

CMSSM, µ > 0

tanβ = 50, A0 = 0

tanβ = 50, A0 = +m1/2

tanβ = 50, A0 = -m1/2

tanβ = 50, A0 = +2 m1/2

tanβ = 50, A0 = -2 m1/2

⇒ worse fit quality

preferred m1/2 valueslarger by 200–300 GeVcompared to tan β = 10case

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.31

Page 50: Electroweak Precision Physics

χ2 fit in mSUGRA with dark matter constraints:MW, sin2 θeff , (g − 2)µ, BR(b → sγ)

68% and 90% C.L. regions in m1/2–A0 plane:[J. Ellis, S. Heinemeyer, K. Olive, G. W. ’04]

tan β = 10:

200 400 600 800 1000m1/2 [GeV]

-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

3000

A0 [G

eV]

CMSSM, µ > 0, tanβ = 10

∆χ2, 90% CL

∆χ2, 68% CL

best fit

tan β = 50:

500 1000 1500 2000m1/2 [GeV]

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

A0 [G

eV]

CMSSM, µ > 0, tanβ = 50

∆χ2, 90% CL

∆χ2, 68% CL

best fit

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.32

Page 51: Electroweak Precision Physics

Fit results for particle masses, tan β = 10:m

χ+

1≈ mχ

02, mτ1

[J. Ellis, S. Heinemeyer, K. Olive, G. W. ’04]

0 200 400 600 800 1000mχ~0

2, mχ~+

1 [GeV]

0

2

4

6

8

10

χ2 (tod

ay)

CMSSM, µ > 0

tanβ = 10, A0 = 0

tanβ = 10, A0 = +m1/2

tanβ = 10, A0 = -m1/2

tanβ = 10, A0 = +2 m1/2

tanβ = 10, A0 = -2 m1/2

0 200 400 600 800 1000mτ~1

[GeV]

0

2

4

6

8

10

χ2 (tod

ay)

CMSSM, µ > 0

tanβ = 10, A0 = 0

tanβ = 10, A0 = +m1/2

tanβ = 10, A0 = -m1/2

tanβ = 10, A0 = +2 m1/2

tanβ = 10, A0 = -2 m1/2

⇒ Good prospects for the LHC and ILCElectroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.33

Page 52: Electroweak Precision Physics

4. Conclusions

Global SM fit

⇒ preference for light Higgs, MH<∼ 260 GeV

strong mt–MH correlation

Fit in mSUGRA with dark matter constraints:

⇒ very good description of the data

preference for relatively small SUSY masses

good prospects for LHC and ILC

At Tevatron, LHC, ILC: improved accuracy of prec. observables

MW, sin2 θeff , mh, . . . and input parameters mt, mt, . . .

⇒ Very sensitive test of electroweak theory

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.34

Page 53: Electroweak Precision Physics

4. Conclusions

Global SM fit

⇒ preference for light Higgs, MH<∼ 260 GeV

strong mt–MH correlation

Fit in mSUGRA with dark matter constraints:

⇒ very good description of the data

preference for relatively small SUSY masses

good prospects for LHC and ILC

At Tevatron, LHC, ILC: improved accuracy of prec. observables

MW, sin2 θeff , mh, . . . and input parameters mt, mt, . . .

⇒ Very sensitive test of electroweak theory

Electroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.34

Page 54: Electroweak Precision Physics

4. Conclusions

Global SM fit

⇒ preference for light Higgs, MH<∼ 260 GeV

strong mt–MH correlation

Fit in mSUGRA with dark matter constraints:

⇒ very good description of the data

preference for relatively small SUSY masses

good prospects for LHC and ILC

At Tevatron, LHC, ILC: improved accuracy of prec. observables

MW, sin2 θeff , mh, . . . and input parameters mt, mt, . . .

⇒ Very sensitive test of electroweak theoryElectroweak Precision Physics, Georg Weiglein, Durham 01/2005 – p.34