Workshop on Precision Physics and Fundamental Constants St. Petersburg , Pulkovo 2013

15
Constrains on variations of fundamental constants obtained from primordial deuterium concentration Workshop on Precision Physics and Fundamental Constants St. Petersburg , Pulkovo 2013 M.S. Onegin B.P. Konstantinov PETERSBURG NUCLEAR PHYSICS INSTITUTE

description

B.P. Konstantinov PETERSBURG NUCLEAR PHYSICS INSTITUTE. Constrains on variations of fundamental constants obtained from primordial deuterium concentration. M.S. Onegin. Workshop on Precision Physics and Fundamental Constants St. Petersburg , Pulkovo 2013. - PowerPoint PPT Presentation

Transcript of Workshop on Precision Physics and Fundamental Constants St. Petersburg , Pulkovo 2013

Page 1: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

Constrains on variations of fundamental constants obtained from primordial deuterium concentration

Workshop on Precision Physics and Fundamental Constants

St. Petersburg , Pulkovo2013

M.S. Onegin

B.P. KonstantinovPETERSBURG NUCLEAR PHYSICS INSTITUTE

Page 2: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

The following reactions were kept in statistical equilibrium:n-+e , n+νe

- , n+ . (n/

MeV

BBN took place during the first few minutes after Big Bang.The universe was initially (first seconds after BB) extremely hot

and only elementary particles exist: proton (p), neutron (n), electron/positron (e±), neutrinos and antineutrinos (ν, )

Page 3: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

η10=1010(𝑛𝐵

𝑛γ)

η10

n + D+γ ; Q= 2.2246 MeVBn

n

/2 DE TDn en

DD

H

nYn

Page 4: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

𝑌=4 𝑦

1+4 𝑦 ≈2 (𝑛/𝑝 )𝐵𝐵𝑁

1+2 (𝑛 /𝑝 )𝐵𝐵𝑁≈ 1

4

Page 5: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

𝑑𝑙𝑛𝑌 𝑎/𝑑𝑙𝑛 𝑋 𝑖

Xi D 4HeGN 0.94 0.36α 2.3 0.0τn 0.41 0.73me -0.16 -0.71QN 0.83 1.55mN 3.5 -0.07

-2.8 0.68-0.22 0-2.1 0

-0.01 0η -1.6 0.04

T. Dent, S. Stern & C. Wetterich Phys. Rev. D 76, 063513 (2007)

Results were obtained using Kawano 1992 code (Report No. FERMILAB-PUB-92/04-A)

aic

Page 6: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

BBN predictionsExperiment: 4He Y = 0.232 – 0.258 K.A. Olive & E.D. Skillman Astrophys. J. 617, 29 (2004)

(D/H) = (2.83 ± 0.052)·10-5 J.M. O’Meara et al Astrophys. J. 649, L61 (2006)

WMAP: 0.25) )·10-10 - yellow

Planck satellite 2013 results: 0.090) )·10-10 - red

Page 7: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

Boundaries on ED variation

− 9.4×10−2<∆𝐸𝐷

𝐸𝐷<6.6×10−2 −10 .9×10−2<

∆𝐸𝐷

𝐸𝐷<3.6 ×10−2

− 9 .4×10−2<∆𝐸𝐷

𝐸𝐷<3.6×10−2

Page 8: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

ED dependence from mDeuteron is a bound state of p-n system with quantum numbers: Jπ = 1+

Deuteron is only barely bound: ED = 2.22457 MeV

Nucleon-Nucleon on-shell momentum-space amplitude in general have the following form:

1 2 1 2 1 2

1 2 1 2

1 2

1 2 1 2

( ', ) C C S S

T T

LS LS

L L

V p p V W V W

V W q q

V W iS q k

V W q k q k

Where:

1 2

' is the momentum transfer,1 ' the average momentum,21 the total spin.2

q p p

k p p

S

Page 9: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

Calculation of effective N-N potential based on effective chiral perturbation theory

Starting point for the derivation of the N-N interaction is an effective chiral πN Lagrangian which is given by a series of terms of increasing chiral dimension:

(1) 2 3 ...N N N NL L L L Here

(1)0 02

1 ...4 2

AN

gL N i Nf f

2 2 2, ,

2, 0

22 2 † 2

, 1 2 0 3 4

,

1 ,2 4

12 ( )8 2 4

N N fix N ct

AN fix

N N

AN ct

N N

L L L

gL N D D i D u NM M

and

g iL N c m U U c u c u u c u u NM M

22 2

1 1...; , ...; 1 ...4 2

i iu D Uf f f f

Page 10: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

Main one- and two-pion contributions to NN interaction

2

2 2

12

OPEP AT

gWf q m

2 4 22 4

4 42 4 2

2

2 2

( ) 4 (5 4 1)384

4823 10 1 ,

( ) ln ; 42

TPEPC A A

AA A

L qW m g gf

g mq g g

w

w w qL q w m qq m

4

2 2 4

3 ( )1 .64

TPEP TPEP AT S

g L qV Vq f

N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625 (1997) 758

Page 11: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

N-N interaction renormalization with mπ

2 2 2

18 2 2

22 2

16 42 2 2 2

2 2

2 2

4 11 2 ,2

4 1 ( )16 16

ln4

OPEP AT

A

A

A

A

m mgW df g q m

g d l m mF g F

g m mF m

4 4.3, 1.29, 92.4 MeVAl g F

The value of d16 can be obtained from the fit to the process πN ππN:

2 2161.76 GeV 0.91 GeVd

Page 12: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

Deuteron binding energy

The wave function of the bound state is obtained from the homogeneous equation:

2,

, ' '32' 0

1 ' '( ) ( , ') ( '),/ 2

with 1 and ' 0, 2.

s jl l l l

lD

dp pp V p p pE p m

s j l l

As an input NN potential we use Idaho accurate nucleon-nucleon potential: D.R. Entem, R. Machleidt, Phys. Lett. B 524 (2002) p.93It’s obtained within third order of chiral perturbation theory and describe rather well the phase shifts of NN scattering. It also describe precisely the deuteron properties: Idaho EmpiricalBinding energy (MeV) 2.22457

52.224575(9)

Asympt. S state (fm-1/2) 0.8846 0.8846(9)Asympt. D/S state 0.0256 0.0256(4)Deuteron radius (fm) 1.9756 1.9754(9)Quadrupole momentum (fm2)

0.284 0.2859(3)

Page 13: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

Results

∆𝐸𝐷

𝐸𝐷=−𝑟

∆𝑚π

𝑚π

𝑟=5.4± 0.4

−7× 10− 3<∆𝑚π

𝑚π<1.9×10−2

𝑚π2 (𝑚𝑢+𝑚𝑑) Λ𝑄𝐶𝐷

∆𝐸𝐷

𝐸𝐷=− 𝑟

2∆𝑚𝑞

𝑚𝑞− 0.0081 ∆ α

α

−1.4 ×10− 2<∆𝑚𝑞

𝑚𝑞<3 .8×10−2

Page 14: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

Thank you for your attention!

Page 15: Workshop on Precision Physics and Fundamental Constants St. Petersburg ,  Pulkovo 2013

Comparing with previous results

3 18 r V.V. Flambaum, E.V. Shuryak. Phys.Rev. D 65 (2002) 103503

6r

S.R. Beane & M.J. Savage. Nucl. Phys. A 717 (2003) 9110r

E. Epelbaum, U.G. Meissner and W. Gloeckle, Nucl. Phys. A 714 (2003) 535