1. Overview of electroweak precision tests 2. Constraints...

25
Electroweak precision tests & constraints on neutrino models A. Freitas University of Pittsburgh 39th International School of Nuclear Physics, Erice-Silicy 1. Overview of electroweak precision tests 2. Constraints on neutrino models 3. Future e + e colliders

Transcript of 1. Overview of electroweak precision tests 2. Constraints...

  • Electroweak precision tests & constraints on neutrino models

    A. Freitas

    University of Pittsburgh

    39th International School of Nuclear Physics, Erice-Silicy

    1. Overview of electroweak precision tests

    2. Constraints on neutrino models

    3. Future e+e− colliders

  • Overview of electroweak precision tests 1/21

    W mass

    µ decay in Fermi Model

    µ−νµ

    νe

    e−

    GF

    µ−νµ

    νe

    e−γQED corr.(2-loop)

    Γµ =G2Fm

    192π3F

    (m2em2µ

    )

    (1 + ∆q)

    Ritbergen, Stuart ’98Pak, Czarnecki ’08

    µ decay in Standard Model

    µ−νµ

    νe

    e−

    W−µ−

    νµ

    νe

    e−

    W−

    Z

    G2F√2

    =e2

    8s2wM2W

    (1 + ∆r)

    electroweak corrections

  • Z-pole observables 2/21

    Indirect sensitivity to top, Higgs, andnew physics through quantum corrections

    Z-pole cross-sectionσ0[e+e− → (Z) → ff̄ ]

    Z-boson width ΓZ

    Partial widths Γf = Γ[Z → ff̄ ]s=M2ZBranching ratios:Rq = Γq/Γhad (q = b, c)

    Rℓ = Γhad/Γℓ (ℓ = e, µ, τ )

    Z

    f

    fHZ

    b

    b

    t

    W

    W

    LEP EWWG ’05

    Ecm [GeV]

    σ had

    [nb]

    σ from fitQED corrected

    measurements (error barsincreased by factor 10)

    ALEPHDELPHIL3OPAL

    σ0

    ΓZ

    MZ

    10

    20

    30

    40

    86 88 90 92 94

  • Z-pole observables 3/21

    Z-pole asymmetries:

    AfFB ≡

    σ(θ < π2) − σ(θ >π2)

    σ(θ < π2) + σ(θ >π2)

    =3

    4AeAf

    ALR ≡σ(Pe > 0) − σ(Pe < 0)σ(Pe > 0) + σ(Pe < 0)

    = Ae

    Af = 2gV f/gAf

    1 + (gV f/gAf)2

    =1 − 4|Qf | sin2 θfeff

    1 − 4|Qf |sin2 θfeff + 8(|Qf |sin2 θfeff)

    2

    sin2 θfeff = “effective weak mixing angle”

    sin2 θfeff = sw ≡ 1 − M2W/M2Z at tree-level

    Most precisely measured for f = ℓ

  • Current status of electroweak precision tests 4/21

    Standard Model after Higgs discovery:

    Good agreement between measured mass and indirect prediction

    Very good agreement over large number of observables

    Erler ’13

    150 155 160 165 170 175 180 185

    mt [GeV]

    10

    20

    30

    50

    100

    200

    300

    500

    1000

    MH [

    GeV

    ]

    ΓZ, σhad, Rl, Rq (1σ)Z pole asymmetries (1σ)MW (1σ)direct mt (1σ)direct MHprecision data (90%)

    Direct measurements:MH = 125.6 ± 0.4 GeVmt = 173.24 ± 0.95 GeV

    Indirect prediction:MH = 123.7 ± 2.3 GeV

    (with LHC BRs)MH = 89

    +22−18 GeV

    (w/o LHC data)

    mt = 177.0 ± 2.1 GeV

  • Current status of SM loop results 5/21

    Known corrections to ∆r, sin2 θfeff , gV f , gAf :

    γ,Z,WW

    W

    W

    γ,Z

    H

    Z

    γ,Z,W

    •• Complete NNLO corrections (∆r, sin2 θℓeff) Freitas, Hollik, Walter, Weiglein ’00Awramik, Czakon ’02; Onishchenko, Veretin ’02

    Awramik, Czakon, Freitas, Weiglein ’04; Awramik, Czakon, Freitas ’06Hollik, Meier, Uccirati ’05,07; Degrassi, Gambino, Giardino ’14

    •• “Fermionic” NNLO corrections (gV f , gAf ) Czarnecki, Kühn ’96Harlander, Seidensticker, Steinhauser ’98

    Freitas ’13,14

    •• Partial 3/4-loop corrections to ρ/T -parameterO(αtα2s), O(α2tαs), O(αtα3s) Chetyrkin, Kühn, Steinhauser ’95

    Faisst, Kühn, Seidensticker, Veretin ’03Boughezal, Tausk, v. d. Bij ’05

    Schröder, Steinhauser ’05; Chetyrkin et al. ’06(αt ≡

    y2t4π

    ) Boughezal, Czakon ’06

  • Current uncertainties 6/21

    Experiment Theory error Main source

    MW 80.385 ± 0.015 MeV 4 MeV α3, α2αsΓZ 2495.2 ± 2.3 MeV 0.5 MeV α2bos, α3, α2αs, αα2sσ0had 41540 ± 37 pb 6 pb α2bos, α3, α2αsRb ≡ ΓbZ/ΓhadZ 0.21629 ± 0.00066 0.00015 α2bos, α3, α2αssin2 θℓeff 0.23153 ± 0.00016 4.5 × 10−5 α3, α2αs

    Theory error estimate is not well defined, ideally ∆th ≪ ∆expCommon methods: •• Count prefactors (α, Nc, Nf , ...)

    •• Extrapolation of perturbative series•• Renormalization scale dependence•• Renormalization scheme dependence

    Also parametric error from external inputs (mt, mb, αs, ∆αhad, ...)

  • Constraints on new physics 7/21

    Oblique parameters:

    αT =ΣWW(0)

    MW− ΣZZ(0)

    MZ

    α

    4s2c2S =

    ΣZZ(M2Z) − ΣZZ(0)MZ

    +s2 − c2

    sc

    ΣZγ(M2Z)

    MZ− Σγγ(M

    2Z)

    MZ

    -1.5 -1.0 -0.5 0 0.5 1.0 1.5

    S

    -1.0

    -0.5

    0

    0.5

    1.0

    T

    all (90% CL)ΓΖ, σhad, Rl, RqasymmetriesMW, ΓWe & ν scatteringAPV

    Erler ’16

  • General parametrization of new physics 8/21

    “Integrate out” heavy praticles with mass m ∼ Λ(expand full result in MZ/Λ)

    Generate higher-dimensional operators, leading dimension 6L = ∑i ciΛ2Oi + O(Λ

    −3) (Λ ≫ MZ)

    Possible operators restricted by SM field content and gauge invarianceBuchmüller, Wyler ’86

    Grzadkowski, Iskrzynski, Misiak, J. Rosiek ’10

  • General parametrization of new physics 9/21

    Effective field theory: L = ∑i ciΛ2Oi + O(Λ−3) (Λ ≫ MZ)

    OT = (DµΦ)†ΦΦ†(DµΦ) α∆T = −v2

    2cTΛ2

    OBW = Φ†BµνWµνΦ α∆S = −e2v2cBWΛ2

    O(3)eLL = (L̄

    eLσ

    aγµLeL)(L̄eLσ

    aγµLeL) ∆GF = −√

    2c(3)eLLΛ2

    OfR = i(Φ

    † ↔Dµ Φ)(f̄RγµfR) f = e, µ τ, b, lq

    OFL = i(Φ† ↔Dµ Φ)(F̄LγµFL) F =

    (

    νe

    e

    )

    ,

    (

    νµ

    µ

    )

    ,

    (

    ντ

    τ

    )

    ,

    (

    u, c

    d, s

    )

    ,

    (

    t

    b

    )

    O(3)FL = i(Φ

    † ↔Daµ Φ)(F̄LσaγµFL)

    In general more operators than EWPOs→ Some can be constrained by W → ℓν, had., e+e− → W+W−

  • Current constraints on some dim-6 operators 10/21

    Assuming flavor universality: L = ∑i ciΛ2Oi + O(Λ−3) (Λ ≫ MZ)

    OT = (DµΦ)†ΦΦ†(DµΦ)OBW = Φ†BµνW µνΦ

    O(3)eLL = (L̄eLσ

    aγµLeL)(L̄eLσ

    aγµLeL)

    OfR = i(Φ† ↔Dµ Φ)(f̄RγµfR)

    OFL = i(Φ†

    ↔Dµ Φ)(F̄Lγ

    µFL)

    O(3)FL = i(Φ†

    ↔Daµ Φ)(F̄Lσaγ

    µFL)

    Pomaral, Riva ’13Ellis, Sanz, You ’14

  • Constraints on neutrino models 11/21

    Heavy sterile neutrinos

    Extend SM with one (several) sterile neutrinosLoinaz, Okamura, Rayyan, Takeuchi, Wijewardhana ’02,04Akhmedov, Kartavtsev, Lindner, Michaels, Smirnov ’13

    Mass matrix in (νe, νµ, ντ , νs) basis:

    0 0 0 yes

    0 0 0 yµs

    0 0 0 yτs

    y∗es y∗µs y

    ∗τs M

    , M ≫ MZ

    → Heavy neutrino mass eigenstate ν4 with m4 ≈ M ,small mixing with SM leptons ǫi = |Ui4|2, (i = e, µ, τ)

    Impact on Z → νν̄: Γν/ΓSMν = 1 − 13(ǫe + ǫµ + ǫτ)

    Impact on Fermi constant: G2F → G2F(1 − ǫe)(1 − ǫµ)µ−

    νµ

    νe

    e−

    GF

    Impact on S/T parameter

    ν

    ℓ±

    W± W±

    ν

    ν̄

    Z Z

    ℓ̄

    Z Z

  • Heavy sterile neutrinos 12/21

    Cancellation between tree-level and loop corrections possible→ Relatively large mixing angles allowed by EWPOs

    ǫe + ǫµ + ǫτ (color coded)

    1 10 102

    mi (TeV)

    4

    5

    6

    7

    χ2

    0

    10−3

    2·10−3

    3·10−3

    4·10−3

    5·10−3

    6·10−3

    7·10−3

    -3 -2 -1 0 1 2 3

    Γlept

    Γinv/Γlept

    sin2 θW

    g2L

    g2R

    M2W

    0νββ

    µ → eγ

    Akhmedov, Kartavtsev, Lindner, Michaels, Smirnov ’13

  • Heavy sterile neutrinos 13/21

    Additonal constraint: lepton number universality de Gouvea, Kobach ’15

  • Lighter sterile neutrinos 14/21

    For m4 < MZ: Decay Z → νiν4 possible

    If ν4 does not decay in detector:→ Lesser suppression of Γν

    de Gouvea, Kobach ’15

    only for Uµ4 = Uτ4 = 0

  • Lighter sterile neutrinos 15/21

    For m4 < MZ: Decay Z → νiν4 possible

    If ν4 does decay in detector:→ Direct search limits Antusch, Fischer ’15

    e+Z

    N

    ν

    ν, ℓ

    Z, W

    e−

    ÈΘΤ2

    ÈΘe2

    ÈΘΜ2

    DELPHI

    20 40 60 80 100 120

    10-1

    10-2

    10-3

    10-4

    10-5

    10-6

    M @GeVD

    ÈΘΑ

    2

  • Future e+e− colliders 16/21

    International Linear Collider (ILC)Int. lumi at

    √s ∼ MZ: 50–100 fb−1

    Circular Electron-Positron Collider (CEPC)Int. lumi at

    √s ∼ MZ: 2 × 150 fb−1

    Future Circular Collider (FCC-ee)Int. lumi at

    √s ∼ MZ: > 2 × 30 ab−1

  • Future projections 17/21

    Measurement error Intrinsic theory

    Current ILC CEPC FCC-ee Current Future†

    MW [MeV] 15 3–4 3 1 4 1

    ΓZ [MeV] 2.3 0.8 0.5 0.1 0.5 0.2

    Rb [10−5] 66 14 17 6 15 7

    sin2 θℓeff [10−5] 16 1 2.3 0.6 4.5 1.5

    → Existing theoretical calculations adequate for LEP/SLC/LHC,but not ILC/CEPC/FCC-ee!

    † Theory scenario: O(αα2s), O(Nfα2αs), O(N2f α2αs)(Nnf = at least n closed fermion loops)

  • Future projections 18/21

    Measurement Intrinsic theory Parametric

    ILC FCC-ee Current Future ILC FCC-ee

    MW [MeV] 3–4 1 4 1 2.6 0.6–1

    ΓZ [MeV] 0.8 0.1 0.5 0.2 0.5 0.1

    Rb [10−5] 14 6 15 7 < 1 < 1

    sin2 θℓeff [10−5] 1 2.3 4.5 1.5 2 1–2

    Projected parameter measurements:

    δmt δαs δMZ δ(∆α)

    ILC: 50 MeV 0.001 2.1 MeV 5 × 10−5

    FCC-ee: 50 MeV 0.0002 0.1 MeV 3–5 × 10−5

  • Projected bounds on neutrino models 19/21

    Improved bounds both from EWPOs and direct searchesAntusch, Fischer ’15

    ILC

    50 100 150 200 250

    10-1

    10-2

    10-3

    10-4

    10-5

    10-6

    10-7

    M @GeVD

    Q2

    L>10m CEPC

    50 100 150 200 250

    10-2

    10-4

    10-6

    10-8

    10-10

    10-12

    M @GeVD

    Q2

    L>10m FCC-ee

    50 100 150 200 250

    10-2

    10-4

    10-6

    10-8

    10-10

    10-12

    M @GeVD

    Q2

    Direct searchesZ pole search 2Σ: ÈyÈ= ÚΑ yΝΑ

    2 , Q2=ÚΑÈΘΑ2

    Higgs ®WW 1Σ: ÈyÈ= ÚΑ yΝΑ2 , Q2=ÚΑÈΘΑ

    2

    e+e-® h +MEHTL 1Σ: ÈyÈ=ÈyΝe È, Q2=ÈΘe

    2

    e+e-® lΝlΝ* 1Σ: ÈyÈ=ÈyΝe È, Q2=ÈΘe

    2

    OtherPrecision constraints: ÈyÈ= yΝe

    2 + yΝΜ2 , Q2=ÈΘe 2+ÈΘΜ 2

    Precision constraints: ÈyÈ=ÈyΝΤ È, Q2=ÈΘΤ

    2

    ’’Unprotected’’ type-I seesaw

  • Displaced vertex search 20/21

    For small mixing |θ|2 = ∑i ǫi and small m4,ν4 propagates in detector before decaying

    Antusch, Cazzato, Fischer ’16

  • Displaced vertex search 20/21

    For small mixing |θ|2 = ∑i ǫi and small m4,ν4 propagates in detector before decaying

    Drewes, Garbrecht, Gueter, Klaric ’16

    → see talk by J. Klaric

  • Summary 21/21

    W/Z precision data provides trong constraints on multi-TeV new physics→ Non-trivial test for low-scale seesaw / left-right symmetric models, etc.

    For some neutrino models and regions of parameter space, EWPOs are themost important constraints

    Future e+e− colliders will probe new, theoretically motivated parameter space

  • Backup slides

  • Theory challenges

    Full SM corrections at ≥2-loop:Large number of diagrams and tensor integrals, O(100) −O(10000)Many different scales (masses and ext. momenta)

    Computer algebra methods:

    Generation of diagrams with FeynArts, QGraf, ...Küblbeck, Eck, Mertig ’92, Hahn ’01

    Nogueira ’93

    Dirac/Lorentz algebra with Form, FeynCalc, ... Vermaseren ’89,00Mertig ’93

    Evaluation of loop integrals:

    In general not possible analytically

    Numerical methods must be automizable, stable, fastly converging

    Need procedure for isolating divergent pieces