Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

12
6.641, Electromagnetic Fields, Forces, and Motion Prof. Markus Zahn Lecture 3: Electroquasistatic and Magnetoquasistatic Fields and Boundary Conditions I. Conditions for Electroquasistatic Fields A. Order of Magnitude Estimate [Characteristic Length L, Characteristic time τ ] Courtesy of Hermann A. Haus and James R. Melcher. Used with permission. i E ε E ε E = ρL L ε E H εE εEL L 2 ρ ∇× H = ε = H = = t L τ τ τ H E error µH µρL 2 µρL 3 ∇× E =−µ = = E = error t L τ τ 2 τ E 3 2 2 error = µρL ε= µεL = L ; c = 1 E τρL τ 2 ( ) 2 ε µ cτ E L error 1 1 E cτ 6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 1 of 12

description

Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions Terms of Use: http://ocw.mit.edu/terms/

Transcript of Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

Page 1: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

6.641, Electromagnetic Fields, Forces, and Motion Prof. Markus Zahn

Lecture 3: Electroquasistatic and Magnetoquasistatic Fields and Boundary Conditions

I. Conditions for Electroquasistatic Fields

A. Order of Magnitude Estimate [Characteristic Length L, Characteristic time τ ]

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

∇ i E = ρ ε ⇒ E = ρ ε ⇒ E =

ρL L ε

∂E H εE εEL L2ρ∇ ×H = ε ⇒ = ⇒ H = =

∂t L τ τ τ

∂H Eerror µH µρ L2 µρ L3

∇ ×E = −µ ⇒ = = ⇒ E = error ∂t L τ τ2 τ

E 3 2 2error =

µρL ε = µεL =

L ; c =

1E τρL τ2 ( )2 ε µcτ

E Lerror 1 ⇒ 1E cτ

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 1 of 12

Page 2: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

_ _

B. Estimate of Error introduced by EQS approximation

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

VE =

d i z = E0 i z

σ = ⎨⎪⎧−εE0 z = d

su ⎪+εE0 z = 0⎩

K 2 b π + π b2 dσsu = 0 ⇒ K = − b dσsu = −

b ε dE 0r rdt 2 dt 2 dt

H ds = ∂ ( E) i da ⇒ H 2 r r ε dE

⇒ H r dE

∫ i ∫ ∂t ε φ π = π 2

dt 0

φ = 2 ε

dt 0

C S

E ds = − µ i da ∫ i ∫ ∂∂

Ht

C S

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 2 of 12

Page 3: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

b 2

⎡E b( ) − ( ) d = + µε

r 'dr 'd E0E r ⎤ d⎣ z z ⎦ 2 ∫ dt2

r

2

=µεd (b2 − r2 ) d E0

4 dt2

2

( ) = E0 +εµ d E0 (r2 − b2 )E r z 4 dt2

If 0 ( ) = A cos E t ωt

2Eerror = εµ d E

20 (b2 − r2 ) =

1 ω2εµ (b2 − r2 )E0 4E 0 dt 4

2ε 2ω µbEerror 1 ⇒ 1 E0 4

1fλ = c =

εµ

ω π 2ε 2 22 c ω µ b π 2 λλ = c ⇒ ω = ⇒ = b 1 ⇒ b

2π λ 4 λ2 π

3 10 8×f=1 MHz in free space ⇒ λ =

6 = 300m

10

If b 100m EQS approximation is valid.

II. Conditions for Magnetoquasistatic Fields

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 3 of 12

Page 4: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

H∇ H J = ⇒J H× = ⇒ = JL

L

∇ ×E = −µ∂H

⇒ E =µH

⇒ E =µHL

=µJL 2

∂t L τ τ τ

∇ ×H = ε ∂E ⇒

Herror =

εE ⇒ H =

εEL = εµJL 3

error error 2 2∂t L τ τ τ

Herror = εµJL3

= εµL2

= L2

1 ⇒ L cτ H τ2JL τ2 ( )2

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

τem = L = L εµ

c

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 4 of 12

Page 5: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

III. Boundary Conditions

1. Gauss’ Continuity Condition

Courtesy of Krieger Publishing. Used with permission.

∫ ε0E i da = ∫ σ sdS ⇒ ε0 (E2n - E1n ) dS = σ sdS S S

⎡ ⎤ε (E - E ) = σ ⇒ n i ε (E - E ) = σ0 2n 1n s ⎣ 0 2 1 ⎦ s

2. Continuity of Tangential E

Courtesy of Krieger Publishing. Used with permission.

∫ E i ds = (E1t - E2t ) dl = 0 ⇒ E1t - E2t = 0 C

n× E 1 - E2 = 0

Equivalent to Φ1 = Φ2 along boundary

( )

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 5 of 12

Page 6: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

3. Normal H

∫ µ0 H da = 0 i S

µ0 (Han - Hbn ) A = 0

Han = H bn

n i ⎡⎣Ha - Hb ⎤⎦ = 0

4. Tangential H

∫ H ds = ∫ i + d ∫ ε0Ei J da i da

dtC S S

H ds - H at ds = Kds bt

H - H = K bt at

n × ⎡⎣Ha - H b ⎤⎦ = K

5. Conservation of Charge Boundary Condition

d ∫ J da +

dt ∫ ρdV = 0i S V

n i ⎡Ja - Jb ⎤ +

∂ σ s = 0 ⎣ ⎦ ∂t

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 6 of 12

Page 7: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

6. Electric Field from a Sheet of Surface Charge

a. Electric Field from a Line Charge

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3Prof. Markus Zahn Page 7 of 12

Page 8: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

3 2

dq λ0rdzdE = cos θ = r 2 24πε0 (r + z ) 4πε0 (r2 + z2 )

+∞ +∞

E = dE = r ∫ r 4 λπ 0

ε r ∫

dz

z=−∞ 0 z=−∞ (r2 + z2 )3 2

+∞

λ0r z =

4πε0 2 ( 2 2 )r z + r z=−∞

λ0= 2πε0r

Another way: Gauss’ Law

1 2

∫ 0E da = ε0 r π λ0 Lε i E 2 rL = S

E =λ0

r 2πε0r

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 8 of 12

Page 9: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

b. Electric Field from a Sheet Charge

dE = dλ

cos θ = σ0ydx

y

2πε0 (x2 + y2 )12 2πε0 (x2 + y2 )

+∞ +∞

E = dE =σ0y dx

y y∫ 2πε0 ∫ x2 + y2

x=−∞ x=−∞

+∞

=σ0y 1

tan−1 x 2πε0 y y −∞

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 9 of 12

Page 10: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

_ _

⎧ σ0⎪ y > 0 ⎪2ε0= ⎨ ⎪−

σ0 y < 0⎪ 2ε⎩ 0

Checking Boundary condition at y=0

( = 0 ) − E (y = 0 ) = σ0E yy + y − ε0

σ0 ⎛ σ0 ⎞ σ0− −⎜ ⎟⎜ ⎟ = 2ε0 ⎝ 2ε0 ⎠ ε0

c. Two sheets of Surface Charge (Capacitor)

⎧ σ ⎧ σ ⎪

0 _i y y > −a ⎪− 0

_i y y > a

⎪2ε0 ⎪ 2ε0E1 = ⎨ , E

2 = ⎨

⎪ σ0 ⎪ σ0⎪− i y y < −a ⎪ i y y < a ⎩ 2ε0 ⎩2ε0

σ0 _i yE E + E= = y < a

1 2 ε0

0 y > a

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 10 of 12

Page 11: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

_ _ _

7. Magnetic Field from a Sheet of Surface Current

From a line current I

IHφ =

π2 r

i = − sin φ i + cos φ iφ x y

Thus from 2 symmetrically located line currents

dIdH = (− sin φ)x

2 x2 + y2π ( )1 2

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 11 of 12

Page 12: Electroquasistatic (EQS) and magnetoquasistatic (MQS) fields and boundary conditions

K dx y= − 0

2π x2 + y2

K0 +∞

dxH = − yx 2π ∫ x2 + y2

x=−∞

+∞K y 1 x

= − 0 tan −1

2π y yx=−∞

⎧ K ⎪− 0 y > 0⎪ 2= ⎨⎪+

K0 y < 0⎪⎩ 2

Check boundary condition at y=0:

Hx (y = 0+ ) − Hx (y = 0− ) = − K0

− K20 −

⎛⎜⎝

K20 ⎞⎟⎠= − K0

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 12 of 12