Electron Microbe Analysis

32
Electron Microprobe Electron Microprobe Analysis Analysis X X - - ray spectrometry: ray spectrometry: 1. 1. X X - - ray generation and emission ray generation and emission 2. 2. X X - - ray detection and measurement ray detection and measurement

Transcript of Electron Microbe Analysis

Page 1: Electron Microbe Analysis

Electron Microprobe Electron Microprobe AnalysisAnalysis

XX--ray spectrometry:ray spectrometry:1.1. XX--ray generation and emissionray generation and emission2.2. XX--ray detection and measurementray detection and measurement

Page 2: Electron Microbe Analysis

XX--ray energy and wavelengthray energy and wavelengthE=hE=hνν

h h : Planck's constant: Planck's constant((6.626x106.626x10--3434 Joule.secJoule.secor, 6.626x10or, 6.626x10--3434/1.6021x10/1.6021x10--1616 keV.seckeV.sec))

ν ν :: frequencyfrequency (= (= c/c/λλ))((c c : speed of light in vacuum: speed of light in vacuum== 2.99793x102.99793x101717 nm/secnm/secλ λ : wavelength): wavelength)

λλ ((nm)nm) = = cc//νν = = hc/Ehc/E = 1.2398/= 1.2398/E E (keV)(keV)

Page 3: Electron Microbe Analysis

The electromagnetic spectrumThe electromagnetic spectrum

λ (nm) = 1.2398/E (keV)

SiKα1.74 keV0.71 nm

UMα3.17 keV0.39 nm

Page 4: Electron Microbe Analysis

Ti KTi Kαα

Fe KFe Kαα

Ti KTi Kββ Fe KFe Kββ

K-shell

L-shell

Characteristic XCharacteristic X--ray generationray generation

Flowchart forX-ray generation

InnerInner--shell ionizationshell ionizationXX--ray and electron transitionray and electron transitionKKαα : : L to KL to K--shellshell KKβ: β: M to KM to K--shellshellLLαα : : M to LM to L--shellshell LLβ: β: N to LN to L--shellshellMMα: α: N to MN to M--shellshell

Page 5: Electron Microbe Analysis

OvervoltageOvervoltage

Condition forCondition forinner shell ionizationinner shell ionization ::U U > 1> 1

U = E/Ecwhere, E is the beam energy (usually 10-25 keV)

Ec : critical excitation energyor absorption edge of the shell

Page 6: Electron Microbe Analysis

KαLαMα

keV

Page 7: Electron Microbe Analysis

InnerInner--shell ionization shell ionization crosscross--sectionsection

Q Q = 6.51x10= 6.51x10--2020 [([(nnssbbss)/()/(UEUEcc22)] ln()] ln(ccssU U ))

Q Q :: Cross sectionCross sectionnnss : # : # electrons in the shellelectrons in the shellbbss,,ccss : : constantsconstants

Page 8: Electron Microbe Analysis

InnerInner--shell ionization shell ionization crosscross--sectionsection

AlK-shell

Ec= 1.84 keV

Best analytical condition, U≈5

Page 9: Electron Microbe Analysis

XX--ray production rangeray production range

An analogous expression to the electron An analogous expression to the electron range ( R = KErange ( R = KE00

nn//ρ ρ ))

XX--ray Rangeray Range:: RR = = K(EK(E00nn -- EEcc

nn)/)/ρρwhere,where, KK = 0.064, = 0.064, nn = 1.68= 1.68

Always smaller than electron rangeAlways smaller than electron range

Page 10: Electron Microbe Analysis

XX--ray depthray depth--distribution: distribution: φφ((ρρzz))

ρ = densityz = depthφ(Δρz) = X-ray intensity generated in a freestanding layerφ(ρz) at depth z = Intensity from depth ‘z’ divided by φ(Δρz)

Page 11: Electron Microbe Analysis

crystalcrystal

detectordetector

WDSWDS WDSWDS

Wavelength Dispersive Spectrometer Wavelength Dispersive Spectrometer (WDS)(WDS)

Page 12: Electron Microbe Analysis

BraggBragg’’s Laws Law

nnλλ = 2= 2dd sinsin θθ= path length ABC= path length ABC

θ = angle ofdiffraction

d = lattice spacing

n = order of diffraction(any integer)

Page 13: Electron Microbe Analysis

WDS: Focusing geometryWDS: Focusing geometry

LL = = nnλ λ .R/d.R/d

take-offangle

angle ofdiffraction

Page 14: Electron Microbe Analysis

Name 2d (Å) Type Elements usually analyzed LDEC 98 Ni/C Multi-layer B-O (Kα), optimized for C analysisSTE 100.4 Pb stearate B-O (Kα), optimized for C analysisLDE1 59.8 W/Si Multi-layer C-F (Kα), optimized for O analysisTAP 25.8 Thallium acid phthalate Na-P (Kα); Cu-Zr (Lα); Sm-Au (Mα)PET 8.742 Pentaerythritol S-Mn (Kα); Nb-Pm (Lα); Hg-U (Mα)LIF 4.028 Lithium fluoride Ti-Rb (Kα); Ba-U (Lα)

WDS: Analyzing crystalsWDS: Analyzing crystals

Page 15: Electron Microbe Analysis

Curved diffracting crystalsCurved diffracting crystals

Johansson typebending curvature: 2Rpolished and ground to R

Johan typeonly bent to 2R,not ground

R

FWHM of fully focusing Johansson-type crystal ~10 eV

Some defocusing in Johan-type, but resolution is not compromised

Page 16: Electron Microbe Analysis

WDS: Analyzing crystalsWDS: Analyzing crystalsVertical, horizontal and tilted spectrometersVertical, horizontal and tilted spectrometers

Page 17: Electron Microbe Analysis

WDS: XWDS: X--ray detectorray detector(proportional counter)(proportional counter)

Flow proportional counter

Page 18: Electron Microbe Analysis

Tungsten collection wire set at 1Tungsten collection wire set at 1--3 kV bias3 kV bias

Flow counter: 90% Flow counter: 90% ArAr +10% CH+10% CH44 (P(P--10); 10); polypoly--propylene windowpropylene window

Sealed counter: Sealed counter: XeXe or Kr; Be windowor Kr; Be window

WDS detector: Proportional counterWDS detector: Proportional counter

Page 19: Electron Microbe Analysis

Collection wire bias range Collection wire bias range (applied potential): 1(applied potential): 1--3 kV3 kV

Bias is set so that Bias is set so that amplification is in the amplification is in the proportional regionproportional region

Amplification in proportional Amplification in proportional countercounter

(Bias)

Page 20: Electron Microbe Analysis

Gas used for long wavelengthsGas used for long wavelengths: : 90% 90% ArAr +10% CH+10% CH44 (P(P--10)10)

Gas used for short wavelengthsGas used for short wavelengths: : XeXe or Kror Kr

Counting efficiency of gas in Counting efficiency of gas in proportional counterproportional counter

Lightelements

Heavyelements

Page 21: Electron Microbe Analysis

WDS: changing the angle WDS: changing the angle of diffractionof diffraction

Page 22: Electron Microbe Analysis

Theoretical and actual limits of Theoretical and actual limits of spectrometer movementspectrometer movement

Page 23: Electron Microbe Analysis

WDS signal processingWDS signal processing

Single channel analyzer (SCA) Single channel analyzer (SCA) and and

pulse height analysis (PHA)pulse height analysis (PHA)

windowbaseline

Only pulses in this voltage interval are

counted

Page 24: Electron Microbe Analysis

WDS: PHA setupWDS: PHA setup

Single Channel Analyzer (SCA) scanSingle Channel Analyzer (SCA) scan

Page 25: Electron Microbe Analysis

BeamBeam--rasteredrastered image: image: electron beam electron beam rastersrasters over the area over the area to be imagedto be imagedStageStage--rasteredrastered image:image: electron electron beam is stationary, stage movesbeam is stationary, stage moves

Imaging with XImaging with X--rays: rays: compositional mappingcompositional mappingMg Ca

Na Ti

Page 26: Electron Microbe Analysis

ZnZn--Sn compositeSn composite

XX--ray image artifact: backgroundray image artifact: background

Page 27: Electron Microbe Analysis

Continuum XContinuum X--rays (background)rays (background)

XX--ray backgroundray background(maximum energy = electron beam (maximum energy = electron beam

energy, Eenergy, E00))

Characteristic XCharacteristic X--raysrays

ContinuumContinuumXX--raysrays

Generated by deceleration of beam Generated by deceleration of beam electrons in the electrons in the CoulombicCoulombic field field of outer shells of target atoms.of outer shells of target atoms.

Page 28: Electron Microbe Analysis

Continuum XContinuum X--rays: background artifactrays: background artifact

Neither material contains CrNeither material contains Cr

But background counts for Cr :But background counts for Cr :

in in 11 in in 22Therefore, if a Cr XTherefore, if a Cr X--ray map is acquired, material ray map is acquired, material 22 will show higher Cr will show higher Cr than material than material 11

A composite made of 2 materials is being mapped:A composite made of 2 materials is being mapped:

22

11

Page 29: Electron Microbe Analysis

Defocusing in beamDefocusing in beam--rasteredrasteredWDS XWDS X--ray mapsray maps

Page 30: Electron Microbe Analysis

Resolution : # pixels (step size)Resolution : # pixels (step size)Signal: beam current and dwell time/pointSignal: beam current and dwell time/point

StageStage--rasteredrastered XX--ray mapping ray mapping parametersparameters

Acquisition time increasesAcquisition time increasesas resolution increasesas resolution increasesas dwell time/point increasesas dwell time/point increases

Page 31: Electron Microbe Analysis

Large area stageLarge area stage--rasteredrastered imagesimages

Scale bar: 4 mmScale bar: 4 mm

BSEBSE OO MgMg CaCa

Resolution: 20 μm/step Image size: 30mm x 15mm#steps (pixels): 1500x750 Dwell time: 30 msec/pointBeam current: 30 nA Voltage: 15 kVAvg stage speed: 0.71 mm/secAcquisition time: 14 hrs

Page 32: Electron Microbe Analysis

MIT OpenCourseWarehttp://ocw.mit.edu

12.141 Electron Microprobe Analysis by Wavelength Dispersive X-ray SpectrometryJanuary (IAP) 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.