Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC...

28
electro de surface stirred δ: const unstirred δ: w time unstirred δ: w time i = nFAD A (əC A / əx) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gr adient = slope of conc. pro file α diffusion rate as C A º → 0 i l = nFAD A C A / δ = k A C A For A + ne - = P E app = E 1/2 – (0.0592 / n) log (C P º / C A º) C P º : surface conc. of product P C A º : surface conc. of analyte A
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    222
  • download

    0

Transcript of Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC...

Page 1: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

electrode surface

stirredδ: const

unstirredδ: ↑w time

unstirredδ: ↑w time

i = nFADA (əCA / əx)

= nFADA [(CA - CAº ) /δ]

(əCA / əx) = conc. gradient

= slope of conc. profile

α diffusion rate

as CAº → 0

il = nFADACA / δ = kACA

For A + ne- = P

Eapp = E1/2 – (0.0592 / n) log (CPº / CAº)

CPº : surface conc. of product P

CAº : surface conc. of analyte A

Page 2: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

1 ms

5 ms

i α(əCA / əx) conc. gradient

α diffusion rate

10 ms

Eappl

Solution: stirred vs. unstirred

Eappl: linear scan vs. stepped

diffusion layer ↑ w time

Page 3: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-9 Current response to a stepped potential for a planar electrode in an unstirred solution. (a) Excitation potential. (b) Current response.

Page 4: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-10 Concentration distance profiles during the diffusion-controlled reduction of A to give P at a planar electrode. (a) Eappl = 0 V. (b) Eappl = point Z in Figure 25-6; elapsed time: 1, 5, and 10 ms.

Page 5: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-16 Vol’tammogram for the reduction of

oxygen in an air-saturated 0.1-M KCl solution. The lower curve is for a 0.1-M KCl solution in which the oxygen is removed by

bubbling nitrogen through the solution.

deaerated (by N2)

air-saturated

DME

0.1 M KCl

Page 6: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-17(a)

A schematic of a voltammtric system for detecting electroactive species as they elute from a column. The cell volume is determined by the

thickness of the gasket.

墊片

Amperometric Detector in Liquid Chromatography

Amperometry: to measure i at the fixed applied potential

i

Eapplied

E

thin-layer cell

amperometric

Page 7: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-17(b)

Detail of a commercial

flow cell assembly.

Page 8: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-17(c)

Configurations of working electrode blocks. Arrows shown the direction of flow in the cell.

Page 9: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

Professor Kissinger is a part time facult

y member and entrepreneur who found

ed the drug development company

Bioanalytical Systems, Inc. He regularl

y counsels students on career opportun

ities in the pharmaceutical industry and

is active in the

Indiana Instrumentation Institute (III) an

d development of the

Purdue Research Park.

Professor— Analytical Chemistry

Department of Chemistry, Purdue University

Peter T. Kissinger

B.S., 1966, Union College; Ph.D., 1970, University of North Carolina; Postdoctoral Associate, 1970-1972.

Page 10: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

Parkinson’s Disease 巴 ( 帕 ) 金森症

• 原因不明的退化性腦疾病

• 缺少 Dopamine ( 多巴胺 ) – a neurotransmitter ( 腦神經傳導物質 )

• 症狀: 顫抖 , 肌肉僵硬 , 動作緩慢

• 研究方法: mouse ( 小白鼠 ), rat ( 大白鼠 )

LC – UV

LC – Fluorescence

LC – EC

Page 11: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

pump

LC-EC

micro-dialysis

微透析

Page 12: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

From column

To waste

UV/Vis LC Detector

Page 13: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.
Page 14: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-18

The Clark voltammetric

oxygen sensor.

Cathodic reaction:

O2 + 4H+ + 4e- → 2H2O.

Anodic reaction:

Ag + Cl- → AgCl(s) + e-

1956

Clark oxygen sensor

To determine the dissolved oxygen in a variety of aqueous environment, e.g., sea water, blood, sewage, etc.

Pt

Ag

Teflon or

Polyethylene (PE)

Page 15: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

(NH2)2CO + 2H2O + H+ 2NH4+ + HCO3

- (23-23)urease

pH 7.5urea

2NH3 + 2H+

Clinical test

尿素氮 ( 腎功能 )

BUN (Blood Urine Nitrogen)

FIGURE 23-13 Enzyme electrodes for measuring urea.

Page 16: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

P.10Ch1 Introduction

ISE

Immunosensors 免疫感測器

Antigen = target analyte

Page 17: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 21-14 Surface plasmon resonance. Laser radiation is coupled into the glass substrate coated with a thin metal film by a half-cylindrical prism. If total internal reflection occurs, an evanescent wave is generated in the medium of lower refractive index. This wave can excite surface plasmon waves. When the angle is suitable for surface plasmon resonance, a sharp decrease in the reflected intensity is observed at the detector.

Au

Page 18: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

P.734Ch25 Voltammetry

antibody

Au film

antigen= target analyte

Surface plasmon resonanace: a label-free immunosensor

Page 19: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-19(a) A: electrode containing immobilized antibody (Y); B: binding of target analyte (▼) to electrode-bound antibody; C: binding of alkaline phosphatase-labeled antibody to electrode-bound analyte; D: application of 320 mV to the electrode and addition of hydroquinone diphosphate (HQDP). Electrochemical oxidation of AP-generated hydroquinone (HQ) generates a current at the electrode that is proportional to the amount of analyte bound to the electrode.

Label 標示基

Fluorescent molecule

enzyme

(alkaline phosphatase)

Sandwich assay

antibody antigen= target analyte

W.E.

hydroquinone diphosphate

hydroquinone

quinone

i α [analyte]

Page 20: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-19(b) Photograph of the biosensor showing the arrangement of lrOx 1-mm-diameter working electrodes, 4-mm-diameter counter electrode, 7-mm-outside-diameter Ag-AgCl reference electrode, and electrical contacts on the substrate (28 × 35 × 1 mm). For clarity, the sample well is not shown.

Page 21: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

at a fixed applied potential

end point

A R A + R

A + R → P

Analyte Reagent i

E

Eapplied

titration reaction:

Stirred

P: electro-inactive

X20

Page 22: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-21 (a) Side view of an RDE showing solution flow

pattern. (b) Bottom view of a disk electrode.

rotate the electrode

rotating disk electrode, RDE

Page 23: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-21

(c) Photo of a commercial RDE.

(d) Bottom view of a ring-disk electrode.

X

Page 24: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

Rotating Disk Electrode, RDE

● The most common method for obtaining a rigorous description of the

hydrodynamic flow of stirred solution is based on a rotating disk electrode.

● Numerous studies of the kinetics and the mechanisms of electrochemical

reaction have been performed with rotating disk electrode.

il = 0.620 n F A D2/3 CA ν-1/6 ω 1/2 (25-15)

ν : kinematic viscosity (cm2/s)

ω : angular velocity

= 2 π f

f : rotation speed ( r p m )

limiting i

修訂錯誤

Levich equation:

Page 25: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-22 Disk (a) and ring (b) current for reduction of oxygen at the rotating-ring-disk electrode.

hydrodynamic

X

Page 26: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-16 Vol’tammogram for the reduction of

oxygen in an air-saturated 0.1-M KCl solution. The lower curve is for a 0.1-M KCl solution in which the oxygen is removed by

bubbling nitrogen through the solution.

deaerated (by N2)

air-saturated

DME

0.1 M KCl

Page 27: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

Cyclic Voltammetry (CV)

potential waveform

Ei (initial potential)

forward scan

reverse scan

switching potential

in unstirred soln

scan rate: 50 mV/s

װ

循環伏安法

23

Page 28: Electrode surface stirred δ: const unstirred δ: ↑w time unstirred δ: ↑w time i = nFAD A (əC A / ə x) = nFAD A [(C A - C A º ) /δ] (əC A / əx) = conc. gradient.

FIGURE 25-24 (a) Potential versus time waveform (b) cyclic voltammogram for a solution th

at is 6.0 mM in K3Fe(CN)6 and 1.0 M in KNO3.

Stationary soln

Pt-disk electrode

no reax

at Ei

Fe(CN)63-

+ e- → Fe(CN)6

4-

Fe(CN)64-

→ Fe(CN)63-

+ e-

for reversible reaction :

Epa – Epc = 0.0592 / n

ipc ≈ ipa

Eº’ = (Epc + Epa) / 2

for diffusion-controlled reax :

ip α ν1/2

a: anodic 氧化的c: cathodic 還原的