Dr. Ray Kwok sjsu · Heinrich Friedrich Emil Lenz (1804-1865) Italy Lenz’s Law (1834) “Back...

36
Electrodynamics Dr. Ray Kwok sjsu

Transcript of Dr. Ray Kwok sjsu · Heinrich Friedrich Emil Lenz (1804-1865) Italy Lenz’s Law (1834) “Back...

Electrodynamics

Dr. Ray Kwok

sjsu

Electrodynamics – Dr. Ray Kwok

Static Fields (stationary charges, steady current)

=×∇

=⋅∇

=×∇

ρ=⋅∇

f

f

JH

0B

0E

D

rr

r

r

r

µ=⋅

=⋅

=⋅

ε=⋅

∫∫∫

to

o

t

IdB

0adB

0dE

QadE

lrr

rr

lrr

rr

)MH(HHB

PEEED

oro

ororrrrr

rrrrr

+µ=µµ=µ=

+ε=εε=ε=

Gauss’s Law

Conservative

No magnetic charge

Ampere’s Law

f

r

fbft

b

o

t

P

E

ρ≤ερ

=ρ+ρ=ρ

ρ−=⋅∇

ερ

=⋅∇

r

rlinear, homogeneous, isotropic

Electrodynamics – Dr. Ray Kwok

Orsted’s Discovery

toIdB µ=⋅∫ lrr

V

S

R

compass

I

André-Marie Ampère(1775–1836) France

SI unit for current

Hans Christian Ørsted(1777–1851) Danmark

cgs unit for B

4/21/1820

Danmark

Ampere’s Law, 9/18/1820,

after he learned about Orsted’s

discovery on 9/11/1820 !!

Electrodynamics – Dr. Ray Kwok

Faraday’s Experiment

Michael Faraday(1791–1867) England

SI unit for capacitance

Joseph Henry(1797–1878) USA

SI unit for inductance

With stationary magnet,

no current induced (1831)

Electrodynamics – Dr. Ray Kwok

Magnetic induction

Electrodynamics – Dr. Ray Kwok

Faraday’s Law

∫⋅=Φ

Φ−=⋅≡

adB

dt

ddEVemf

rr

lrr

R

uB

R

VI

VuBdt

dxB

dt

d

xBdxB

emf

emf

x

0

l

ll

ll

==

−===Φ

==Φ ∫

magnetic flux

oppose the “change” of

direction given by Lenz’s Law

u

B

IR

x

l

Electrodynamics – Dr. Ray Kwok

u

B

IR

x

Heinrich Friedrich Emil Lenz

(1804-1865) Italy

Lenz’s Law (1834)“Back emf” to oppose the “change” of magnetic flux

Electrodynamics – Dr. Ray Kwok

Example – moving magnet

Electrodynamics – Dr. Ray Kwok

Example - jumping ring

V

S

R

Al ring

I

FB B

I

FB

Electrodynamics – Dr. Ray Kwok

e.g. magnet in a copper tube

N

S

Bind

Electrodynamics – Dr. Ray Kwok

Eddy current - disc brake

BLIFBrrr

×=

Lenz’s Law

metal plate

Electrodynamics – Dr. Ray Kwok

To reduce eddy current

transformer

Electrodynamics – Dr. Ray Kwok

Example – metal detector

Electrodynamics – Dr. Ray Kwok

Example – guitar pickup

Electrodynamics – Dr. Ray Kwok

Question

Right, 0, Left, Left, Left

V

S r

R

Find the direction of the current in the resistor R shown in Figure at

each the following steps: (a) at the instant the switch is closed, (b)

after the switch has been closed for several minutes, (c) when the

variable resistance r increases, (d) when the circuit containing R

moving to the right, away from the other circuit, and (e) at the instant

the switch is opened.

Electrodynamics – Dr. Ray Kwok

Moving Conductor

u

B

+FB

−−−−FB

l

l

rrr

rrr

rr

uBV

uBV

BuE

0BuqEq

0FF BE

−=

−=

×−=

=×+

=+

saturate when

emf

u

B+

-

IR

induced E

similar to Hall Effect

induced

separate the charges

direction agrees w/ Lenz’s Law

emf is “+” u x B

induced current

I = |V/R| = B u/Rl

Electrodynamics – Dr. Ray Kwok

Generalized Faraday’s Law

∫∫

∫∫∫∫

∫∫

∫∫

⋅∂∂

−⋅×=Φ

−=

⋅×−⋅∂∂

=⋅

××∇−

∂∂

=⋅

⋅×=⋅≡

⋅∂∂

−=Φ

−=⋅≡

adt

BdBu

dt

dV

dBuadt

Bad)Bu(

t

BadB

dt

d

dBudq

FV

adt

B

dt

ddEV

emf

Bemf

emf

rr

lrrr

lrrrr

rrrr

rrr

lrrr

lr

r

rr

lrr

changing B(t), stationary loop

fixed B, moving loop

induced emf in a moving loop w.r.t. “stationary” B(t)

u

loop

magnet

Einstein’s Relativity:

move the loop, Lorentz force (magnetic) [motional emf]

move the magnet, induced emf – electric [transformer emf]

hw

Electrodynamics – Dr. Ray Kwok

Example – rotating loop

tsinBAtsinBh2

w2

h)tsinuB(2dBuVemf

ωω=ω

ω=

ω=⋅×= ∫ lrrr

tsinBA)tcosBA(dt

d

adBdt

dVemf

ωω=ω−=

⋅−= ∫rr

θ = ωt uniform B

OR

Direction of current (at this instance)??

Electrodynamics – Dr. Ray Kwok

Group Exercise

Find the induced emf in a

rectangular loop rotating at

an angular velocity ω in a

magnetic field Bosinωt.

& the direction of induced

current?

(Can you do this problem in

2 ways?)

−ωBoAcos2ωt

Electrodynamics – Dr. Ray Kwok

tsinBAN

dt

dNVemf

ωω=

Φ−=

AC generator

Electrodynamics – Dr. Ray Kwok

DC generator

Electrodynamics – Dr. Ray Kwok

Electromotor

To turn faster, should we

1. use thicker wire?

2. use more turns?

3. make bigger loop?

4. use stronger magnet

Electrodynamics – Dr. Ray Kwok

Answer… (not counting friction)

e.g. flash lights

l

l

rr

r

rrrrr

rlrr

'AVm

'AR

I

nNIAm

BmFr

BIF

R

BAN|I|

tsinBANdt

dNV

B

B

emf

ρ=ρ=

ρ=

α=τ

=

×=×=τ

×=

ω=

ωω=Φ

−= 1. use thicker wire?

2. use more turns?

same.

e.g. half R, double mass, same α

same.

double N, double R, same I,

double mm, but double inertia, same α.

3. use bigger loop? (same N)

same.

bigger A, more Φsomewhat higher R, but still more I ~A/R~ r

mm~A2/R~r3, inertia~r3, same α

torque

magnetic moment

I = moment of inertia

4. use stronger magnet?

YES

more I, m, τ, α

resistivity

mass density

Electrodynamics – Dr. Ray Kwok

Another important application – telephony / loudspeaker

(?? before him)

Alexander Graham Bell(1847 –1922) UK

(practical improvement)

Thomas Alva Edison

(1847 –1931) USA

Electrodynamics – Dr. Ray Kwok

Ideal Transformer (AC)

Φ is confined in the core (µ = ∞)

L

2

2

1

2

2

1

2

2

1

1in

2

1

1

2

2

1

2211

21

2

1

2

1

22

11

RN

N

N

N

I

V

I

VR

N

N

I

I

V

V

IVIV

PP

N

N

V

V

dt

dNV

dt

dNV

=

==

==

=

=

=

Φ−=

Φ−=

RL

Electrodynamics – Dr. Ray Kwok

Self-Inductance

dt

dIL

dt

dNV

I

NL

−=Φ

−=

Φ≡

back emf causes I lags V

V = IZ = I(R + jωL) = I |Z|ejθ

RL

V

Electrodynamics – Dr. Ray Kwok

Ideal Solenoid

ideal:

• large N tightly wound

• no end effect

• uniform internal B

• zero external B in the vicinity

AnI

nIAN

I

NL

nIAadB

nINI

B

2

oo

o

oo

l

rrl

µ=µ

=

µ=⋅=Φ

µ=µ

=

Ampere’s Law:

Electrodynamics – Dr. Ray Kwok

π

µ=

Φ=

π

µ=φ⋅φ

πµ

=⋅=Φ

φπ

µ=

µ=⋅

∫∫

a

bln

2

h

IL

a

bln

2

Ihhdrˆˆ

r2

IadB

ˆr2

IB

IdB

o

o

b

a

o

o

o

rr

r

lrr

Coaxial Cable

Electrodynamics – Dr. Ray Kwok

LC Resonator (Lenz’s Law, later resonator…)

Electrodynamics – Dr. Ray Kwok

Mutual-Inductance

1

1212

IM

Φ≡

Φ12 is the flux through loop 2 due to the

B generated by loop 1

21

12

21o

1

1212

21

12

1o12

oo

21212112

Mr

dd

4IM

ddr

I

4

'd|'rr|

)'r(I

4'dV

|'rr|

)'r(J

4)r(A

dAadAadB

∫∫

∫∫

∫∫

∫∫∫

=⋅

πµ

=

⋅π

µ=Φ

−πµ

=−π

µ=

⋅=⋅×∇=⋅=Φ

lr

lr

lr

lr

lr

rrrr

rrrr

lrrrrrr

more than 1 turn?

1

12212

I

NM

Φ=

Electrodynamics – Dr. Ray Kwok

Transformer - Primary / Secondary coils

same cross-section?

12

12

2

1

1

2

2

2

1

1

M

I

N

I

N

tN

V

N

V

Φ==

∂Φ∂

−==

same equations different cross-section? h.w.

Electrodynamics – Dr. Ray Kwok

Magnetic Energy

21

2

22

2

11m

222121

111212

2222

1111

122222211111m

12222

21111

2211m

IMIIL2

1IL

2

1W

MIIM

MIIM

IL

IL

I2

1I

2

1I

2

1I

2

1W

I2

1I

2

1W

++=

==Φ

==Φ

Φ+Φ+Φ+Φ=

Φ+Φ=Φ

Φ+Φ=Φ

Φ+Φ=

For coupling circuits 1 & 2…For an inductor …

Φ=

=

µ= ∫

I2

1W

LI2

1W

dVB

2

1W

m

2

m

o

2

m

Electrodynamics – Dr. Ray Kwok

Faraday’s Law - differential

Stokes’ theorem

E is induced in moving medium

B is measured in stationary frame

curl operates in moving frame

t

)r(B)r(E

))r(Bu('t

)r(B)'r(E

)Bu(t

BE

ad)Bu(t

BadE

adBdt

ddEVemf

∂∂

−=×∇

××∇+∂

∂−=×∇

××∇+∂∂

−=×∇

××∇−

∂∂

−=⋅×∇

⋅−=⋅≡

∫∫

∫∫

rrrr

rrrrr

rr

rrr

r

rrrr

rr

rrlrr

for stationary loop (rest frame)

or localized, RF EM wave (microscopic)

relativity, low f

Electrodynamics – Dr. Ray Kwok

Electrodynamics

=×∇

=⋅∇∂∂

−=×∇

ρ=⋅∇

f

f

JH

0Bt

BE

D

rr

r

rr

r

µ=⋅

=⋅

Φ−=⋅

ε=⋅

∫∫

to

o

t

IdB

0adB

dt

ddE

QadE

lrr

rr

lrr

rrGauss’s Law

Faraday’s Law

No magnetic charge

Ampere’s Law

Electrodynamics – Dr. Ray Kwok

Electric Potential

0V

VE

0E

=∇×∇

−∇≡

=×∇r

rstatic

define

such that

t

AVE

Vt

AE

0t

AE

Att

BE

∂∂

−−∇=

−∇≡∂∂

+

=

∂∂

+×∇

×∇∂∂

−=∂∂

−=×∇

rr

rr

rr

rr

rdynamic

Need both V and A to find E !!!!!

0A

AB

0B

=×∇⋅∇

×∇≡

=⋅∇

r

rr

r

define

such that

Electrodynamics – Dr. Ray Kwok

Group Exercise

I1(t)

I2

1 m

3 m

5 m

N = 20

Rectangular loop of 20 turns is placed at

1 m away from a long current-carrying

wire as shown.

I1(t) = 2 cos(60t) (A)

Resistivity of the wire in the loop is 4 Ω/m.

Find I2.

+2.6 sin(60t) µA

independent of N