Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference:...

31
Plane Electromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics, David K. Cheng (Addison-Wesley) Electromagnetics for Engineers, Fawwaz T. Ulaby (Prentice Hall)

Transcript of Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference:...

Page 1: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

PlaneElectromagnetic Waves

EE142Dr. Ray Kwok

•reference:

Fundamentals of Engineering Electromagnetics, David K. Cheng (Addison-Wesley)

Electromagnetics for Engineers, Fawwaz T. Ulaby (Prentice Hall)

Page 2: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Source-free Maxwell Equations

t

EH

0Ht

HE

0E

∂ε=×∇

=⋅∇∂

∂µ−=×∇

=⋅∇

rr

r

rr

r

t

EJH

0Ht

HE

E

f

f

∂ε+=×∇

=⋅∇∂

∂µ−=×∇

ρ=⋅∇ε

rrr

r

rr

r

in source-free medium

(homogeneous,

linear, isotropic)

ρ = 0, J = 0

Page 3: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Wave Equation

( ) ( )

( ) ( )

2

22

22

2

2

t

EE

EEEE

t

EH

tt

HE

t

EH

t

HE

∂µε=∇

−∇=∇−⋅∇∇=×∇×∇

∂µε−=×∇

∂µ−=

∂µ−×∇=×∇×∇

∂ε=×∇

∂µ−=×∇

rr

rrrr

rr

rr

rr

rr

plane wave equation with v2 = 1/µε

Page 4: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Traveling Wave

2

2

22

2

2

2

2

2

2

t

f

v

1

x

f

)u("fvt

u)u("vf

t

f

)u('vft

u)u('f

t

f

)u("fx

u)u("f

x

f

)u('fx

u)u('f

x

f

)u(f)vtx(f

∂=

=∂

∂±=

±=∂

∂=

=∂

∂=

=∂

∂=

≡± reverse / forward traveling wave

wave equation

( )

( )

( )

( )rktf

kxtf)vtx(f

kxtk

1

ft2kxk

1

vt2

x2

k

1vtx

rr⋅−ω

±ω=±

±ω±=

π±=

λ

π±

λ

π=±

note:

(3D)

Page 5: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Plane Wave

µε==

ω

µεω=

µεω−=−

ω−=∂

−=∇

=

∂µε=∇

⋅−ω

1v

k

k

k

Et

E

EkE

eE)t,r(E

t

EE

22

2

2

2

22

)rkt(j

o

2

22

rr

rr

rrr

rr

rr

)rkt(j

o

2

22

eH)t,r(H

t

HH

rrrrr

rr

⋅−ω=

∂µε=∇

Similarly for B or H field

Page 6: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Source-free EM wave)kzt(j

oeEx)t,r(E −ω=rr

)kzt(jo

)kzt(j

o

)kzt(j

o

ekE

y)t,r(H

ejkEyE

HjE

00eE

zyx

zyx

E

−ω

−ω

−ω

ωµ=

−=×∇

ωµ−=×∇

∂=×∇

rr

r

rr

r

V/m in vacuum with no current source.

What is H ?

)kzt(jo

)kzt(jo

)kzt(jo

)kzt(jo

)kzt(j

o

ev

Ey)t,r(B

ev

EyHB

eE

y)t,r(H

1

v

1

f

1k

ekE

y)t,r(H

ejkEyE

−ω

−ω

−ω

−ω

−ω

=

µ

µ=µ=

η=

η≡

µ

ε=

µ

µε=

µ=

λµ=

ωµ

ωµ=

−=×∇

rr

rr

rr

rr

r

ηηηη = wave

Impedance

Page 7: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

EM wave properties

)kzt(jo

)kzt(jo

)kzt(j

o

ev

Ey)t,r(B

eE

y)t,r(H

eEx)t,r(E

−ω

−ω

−ω

=

η=

=

rr

rr

rr

HEk

kHE

×=

⊥⊥rrr

(1) E & H are in phase.

ε

µ=η=

µε===

o

o

rro

o

H

E

c

n

cv

B

E

(2)

(3)

Index of refraction

Page 8: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Electromagnetic wave

Page 9: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Earlier exercise

)zt900cos(01.0x)t,r(H β+=rr

A/m in vacuum with no current source.

What is f, λ, direction of propagation, E ?

ω = 2πf = 900, f = 143 Hz

λ = c/f = (3 x 108)/(143) = 2094 km

propagate to the –z direction

EjHrr

ωε=×∇

E(r) = ay 3.77 cos[900t + 3(10-6)z] V/m

HEk

kHE

×=

⊥⊥rrr

(1) E & H are in phase.

η=

=

o

o

o

o

H

E

vB

E

(2)

(3)

ηo = 377 Ω

Page 10: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Example)1.0zt10sin()02.0y01.0x()t,r(H 9 −β+−=

rrA/m. What is E ?

β = ω/c = 109/(3 x 108) = 3.33 rad/m

(1) E & H are in phase.

HEk

kHE

×=

⊥⊥rrr

(2)

η=

=

o

o

o

o

H

E

vB

E(3)

ηo = 377 Ω

)1.0z33.3t10sin(E)t,r(E9

o −+=rrr

V/m

y447.0x894.05

yx2E +=

+=x

y

H

E

Ho2 = 0.012 + 0.022 → Ho = 0.022 = Eo/ηo = Eo/377

Eo = 8.3 V/m

)1.0z33.3t10sin()7.3y4.7x()t,r(E

)1.0z33.3t10sin()447.0y894.0x(3.8)t,r(E

9

9

−++=

−++=rr

rr

V/m

Page 11: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Exercise)yz3t10cos(20x)t,r(E 8 −+=

rrV/m in non-magnetic material.

What is H ?

v = ω/k = 108/√10 = 3.16 x 107 m/s

v = c/n = c/√εr → εr = (c/v)2 = 90

η = √(µ/ε) = ηo/√εr = 377/√90 = 39.7

(1) E & H are in phase.

HEk

kHE

×=

⊥⊥rrr

(2)

)yz3t10cos(H)t,r(H 8

o −+=rrr

A/m

Ho = Eo/η = 20/39.7 =0.5

)yz3t10cos()158.0z475.0y()t,r(H

)yz3t10cos()316.0z949.0y(5.0)t,r(H

8

8

−++−=

−+−−=rr

rr

A/m

z316.0y949.010

zy3H −−=

−−=

y

z

k

E

H

η=

=

o

o

o

o

H

E

vB

E(3)

ηo = 377 Ω

yz3k +−=r

Page 12: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

EM wave properties - generalized

HEk

kHE

×=

⊥⊥rrr

(1) E & H are in phase.

ε

µ=η=

µε===

o

o

rro

o

H

E

c

n

cv

B

E

(2)

(3)

Index of refraction

Ek1

Hrr

×η

=

kHE ×η=rr

Page 13: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Earlier exercise (free space)

)1.0zt10sin()02.0y01.0x()t,r(H 9 −β+−=rr

A/m. What is E ?

β = ω/c = 109/(3 x 108) = 3.33 rad/m

)1.0z33.3t10sin()54.7x77.3y(E

)z()1.0ztsin()02.0y01.0x(377E

kHE

9 −++=

−×−β+ω−=

×η=

r

r

rr

V/m.

Page 14: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Earlier exercise)yz3t10cos(20x)t,r(E 8 −+=

rrV/m in non-magnetic material.

What is H ?

A/m

yz3k +−=r

( )[ ]

( ) ( )yz3t10cos159.0z478.0yH

yz3t10cos20x10

yz3

7.39

1H

Ek1

H

8

8

−+−−=

−+×

+−=

×η

=

r

r

rr

v = ω/k = 108/√10 = 3.16 x 107 m/s

v = c/n = c/√εr → εr = (c/v)2 = 90

η = √(µ/ε) = ηo/√εr = 377/√90 = 39.7

Page 15: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Poynting Theorem

( )

( )

( )

( )HEt

HHHE

HEEHHE

t

EEHEJE

t

EJH

dVJEdt

dW

dtJEVdtvEVdW

dtvEqdW

dtvBvEqdFdW

f

rrr

rrr

rrrrrr

rrrrrr

rrr

rr

rrrr

rr

rrrrlrr

×⋅∇−

∂µ−⋅=×∇⋅

×∇⋅−×∇⋅=×⋅∇

∂⋅ε−×∇⋅=⋅

∂ε+=×∇

⋅=

⋅δ=⋅ρδ=

⋅δ=

⋅×+δ=⋅=

Work done on a charge δδδδq by EM force:

( )

( )

( )

( )

adSt

U

dt

dW

adHEdVt

E

t

H

2

1

dt

dW

dVHEdVt

E

t

H

2

1

dt

dW

HEt

E

2t

H

2JE

t

EEHE

t

HHJE

EM

2

o

2

22

22

rr

rrrrr

rrrr

rrrr

rr

rrrr

rrrr

∫∫

∫∫

⋅−∂

∂−≡

⋅×−

∂ε+

∂µ−=

×⋅∇−

∂ε+

∂µ−=

×⋅∇−∂

∂ε−

∂µ−=⋅

∂⋅ε−×⋅∇−

∂⋅µ−=⋅

(math)

Poynting Vector

Power flow out of the enclosed surface

EM power stored in the volume

The decrease of the EM energy stored is to do work on

a charge or due to the net energy escape through the

surface.

the work-energy theorem

for electrodynamics

Page 16: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Poynting Vector

HESrrr

×≡

Magnitude gives power intensity = power/area

Direction gives direction of propagation

2

o

2

o

ave

ave

H22

ES

*]HE[e2

1S

η=

η=

×ℜ≡rrr

This is similar to P = ½ (V2/Z) = ½ (I2Z)

Time average

Page 17: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

ExampleIf solar illumination is characterized by a power density of 1 kW/m2 at Earth’s surface,

find (a) the total power radiated by the sun,

(b) the total power intercepted by Earth, and

(c) the electric field of the power density incident upon Earth’s surface, assuming that

all the solar illumination is at a single frequency. The radius of Earth’s orbit around the

sun, Rs, is approximately 1.5 x 108 km, and Earth’s mean radius RE is 6380 km.

(a) Average power radiated Psun = Save(4πRs2) = (103)(4π)(1.5 x 1011)2 = 2.8 x 1026 W

(b) Average power intercepted PE = Save(πRE2) = (103)(π)(6.38 x 106)2 = 1.28 x 1017 W

(c) Electric field intensity …

870)10)(377(2S2E

2

ES

3

aveoo

2

o

ave

==η=

η=

V/m

Page 18: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Linear Polarization

)ztcos(Ex)t,r(E 1o1 β−ω=rr

x

y Defined by the direction of E-field. For example:

Horizontal polarization

)ztcos(Ey)t,r(E 2o2 β−ω=rr

Vertical polarization

x

y

21TOTAL EEErrr

+=ETOTAL is still linearly polarized

If Eo1 = Eo2, then ETOTAL is at 45 degrees.

A linear combination of these….

E1

E2

Any EM wave can be expressed as a linear combination ofhorizontal & vertical polarized field.

Page 19: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Circular Polarization

)ztcos(Ex)t,r(E 1o1 β−ω=rr

21T EEErrr

+=

x

y

If E1 & E2 are 90 degrees out-of-phase, & Eo1 = Eo2:

Horizontal polarization

)ztsin(Ey)t,r(E 2o2 β−ω=rr

Vertical polarization

ET(t=0)

ET(t>0)RHCP

Right-Hand Circularly Polarized

)zt(j

o

)2/zt(j

o

)zt(j

o

oo

eE)yjx()t,r(E

eEyeEx)t,r(E

)ztsin(Ey)ztcos(Ex)t,r(E

β−ω

π−β−ωβ−ω

−=

+=

β−ω+β−ω=

rr

rr

rr

Page 20: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Page 21: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

LHCP

x

y

ET(t=0)

ET(t>0)

)zt(j

o

)2/zt(j

o

)zt(j

o

oo

eE)yjx()t,r(E

eEyeEx)t,r(E

)ztsin(Ey)ztcos(Ex)t,r(E

β−ω

π+β−ωβ−ω

+=

+=

β−ω−β−ω=

rr

rr

rr

LHCP

Page 22: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Circular polarization in nature

Rose Chafer (a beetle)& others…

Reflection from its surface is LHCP.,due to the helical molecular structureof their shells.

Page 23: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Mantis Shrimp (Stomatopod Crustacean)

Able to sense LHCP & RHCP,

over a wide spectrum of color,

better than man-made instrument.

Most complex eye structure in

animal kingdom.

Fastest animal (striking) & produces

over 200 lbs of striking force !!!

Nature Photonics 3, 641-644 (2009)Roberts, Chiou, Marshall & Cronin,

Sheila Patek at TED.com

a popular dish known as

"pissing shrimp" (攋尿蝦)

Page 24: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Circular polarization in starlight

Most starlight are slightly circularly polarized.

The interstellar medium (low density dust) can produce circularly polarized

(CP) light from unpolarized light by sequential scattering from elongated

interstellar grains (with complex index of refraction) aligned in different

directions. One possibility is twisted grain alignment along the line of sight

due to variation in the galactic magnetic field; another is the line of sight

passes through multiple clouds.

Page 25: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Polarizer

θunpolarized

Io

polarized

I1 = ½ Io

polarized

I2 = I1cos2θ = ½ Iocos2θ

complex n

Linearly polarized

intensity

Page 26: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Elliptical Polarization

)zt(j

2o1o

2o1o

e)EyjEx()t,r(E

)ztsin(Ey)ztcos(Ex)t,r(E

β−ω=

β−ω±β−ω=

mrr

rrIf Eo1 ≠ Eo2

Or, if the phase difference is not 90 degrees

RHEP

LHEP

)zt(j

o

j

)zt(j

o

)zt(j

o

eE)eyx()t,r(E

eEyeEx)t,r(E

β−ωδ

δ+β−ωβ−ω

+=

+=rr

rr

RHEP (δ < 0)

LHEP (δ > 0)

Special cases:

if δ = −π/2, → RHCP

if δ = π/2, → LHCP

x

y

ET(t=0)

LHEP

ET(t>0)

E02

E01

Page 27: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Polarization Generalization)zt(j

y

)zt(j

x eayeax)t,r(E δ+β−ωβ−ω +=rr

0

0

cos)2tan(2tan

sin)2sin(2sin

a

atan

R

1tan

a

aR

o

o

x

y

o

δψ=γ

δψ=χ

≡ψ

±≡χ

≡η

ξaxial ratio ≥ 1= 1 circular

= ∞ linear

ellipticity angle

χ > 0 when sinδ > 0 → LHχ < 0 when sinδ < 0 → RH

auxiliary angle

0 ≤ ψο ≤ π/2

−π/4 ≤ χ ≤ π/4

rotation angle −π/2 ≤ γ ≤ π/2

if cosδ > 0

if cosδ < 0

Page 28: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Polarization States

Page 29: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

e.g. what’s the polarization?

( )( ) )6/kzt(j105j

)6/kzt(j12/7j

)4/3kzt(j)6/kzt(j

)2/4/kzt(j)6/kzt(j

)2/4/kzt(j)6/kzt(j

ee4y3x)t,z(E

ee4y3x)t,z(E

e4ye3x)t,z(E

e4ye3x)t,z(E

e4ye3x)t,z(E

o π+−ω

π+−ωπ

π+−ωπ+−ω

π+π−π+−ωπ+−ω

π−π+−ωπ+−ω

+=

+=

+=

+=

−=

r

r

r

r

r)4/kztsin(4y)6/kztcos(3x)t,z(E π+−ω−π+−ω=

r

o

oo

o

o

oo

o

o

o

x

y

o

69

)105cos()106tan(cos)2tan(2tan

34

)105sin()106sin(sin)2sin(2sin

53

3

4

a

atan

−=γ

=δψ=γ

=δψ=χ

=≡ψ00256.0)105cos(cos

LH00966.0)105sin(sin

105

o

o

o

<γ⇒<−==δ

⇒>χ⇒>==δ

x

y

ay=4

ax=3

χχχχ

γ γ γ γ = −−−− 69o

ψψψψo

LHEP

Page 30: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

Linear combination

)ztcos(Ex)t,r(E o β−ω=rr

Any LP EM wave can be written as linear combination of RHCP + LHCP

( ) ( )[ ]

2

EEE

eEEyjEEx)t,r(E

)t,r(E)t,r(E)t,r(E

eE)yjx()t,r(E

eE)yjx()t,r(E

o12

)zt(j

1221T

LHCPRHCPT

)zt(j

2LHCP

)zt(j

1RHCP

==

−++=

+=

+=

−=

β−ω

β−ω

β−ω

rr

rrrrrr

rr

rr

e.g.

More generally, any EM wave can be written as linear combination of RHEP + LHEP

Page 31: Plane EM waves - San Jose State UniversityElectromagnetic Waves EE142 Dr. Ray Kwok •reference: Fundamentals of Engineering Electromagnetics , David K. Cheng (Addison-Wesley) Electromagnetics

Plane EM Wave - Dr. Ray Kwok

ExerciseThe amplitudes of an elliptically polarized plane wave traveling in a lossless,

nonmagnetic medium with εr = 4 and Hxo= 8 mA/m, and Hyo= 6 mA/m. Determine the average power flowing through an aperture in the y-z plane if its area is 20 m2.

η = 60π = 188.5 ΩSave = 9.43 mW/m2 along the x-axis

Pave = 0.19 W