Douglas C. Giancoli Chapter 28 - George Mason...

58
Chapter 28 Sources of Magnetic Field Physics for Scientists & Engineers, 3 rd Edition Douglas C. Giancoli © Prentice Hall

Transcript of Douglas C. Giancoli Chapter 28 - George Mason...

Page 1: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Chapter 28

Sources of Magnetic Field

Physics for Scientists & Engineers, 3rd EditionDouglas C. Giancoli

© Prentice Hall

Page 2: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

3P15-

Magnetic Fields

B q= ×F v B

Magnetic Dipoles Create and Feel B Fields:

Also saw thatmoving charges feel a force:

Page 3: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

5P15-

Cyclotron Motion(1) r : radius of the circle

2mvqvBr

=mvrqB

⇒ =

(2) T : period of the motion

2 2r mTv qBπ π

= =

2 v qBfr m

ω π= = =(3) ω : cyclotron frequency

Page 4: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

7P15-

B q= ×F v B

Magnetic Force on Current-Carrying Wire

( ) mcharges

= ×B

( )B I= ×F L B

charge ms

= ×B

Page 5: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

9P15-

Magnetic Force on Current-Carrying Wire

Current is moving charges, and we know that moving charges feel a force in a magnetic field

Page 6: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

17P15-

Electric Field Of Point ChargeAn electric charge produces an electric field:

r̂ 2

1 ˆ4 o

qrπε

=E r

r̂ : unit vector directed from q to P

Page 7: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

18P15-

Magnetic Field Of Moving ChargeMoving charge with velocity v produces magnetic field:

2

ˆx4

o qr

µπ

=v rB

:r̂r̂

P

unit vector directed from q to P

permeability of free space70 4 10 T m/Aµ π −= × ⋅

Page 8: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

19P15-

The Biot-Savart LawCurrent element of length ds carrying current I produces a magnetic field:

20 ˆ

4 rdI rsBd ×

µ

(http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/magnetostatics/03-CurrentElement3d/03-cElement320.html)

Page 9: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-1

Page 10: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-3

Page 11: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-5

Page 12: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-15

Page 13: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-16

Page 14: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-19

Page 15: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-17

Page 16: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

20P15-

The Right-Hand Rule #2

ˆ ˆˆ × =z ρ φ

Page 17: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

23P15-

Example : Coil of Radius RConsider a coil with radius R and current I

II

IP

Find the magnetic field B at the center (P)

Page 18: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

25P15-

Example : Coil of Radius RIn the circular part of the coil…

ˆd ⊥s r ˆ| d | ds→ × =s r

r̂sd

II

I0

2

ˆ4

dIdBr

µπ

×=

s rBiot-Savart:

024

I dsr

µπ

=

024

I R dR

µ θπ

=

0

4I d

Rµ θ

π=

Page 19: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

24P15-

Example : Coil of Radius RConsider a coil with radius R and current I

II

IP

1) Think about it:• Legs contribute nothing

I parallel to r• Ring makes field into page

2) Choose a ds3) Pick your coordinates4) Write Biot-Savart

Page 20: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

26P15-

Example : Coil of Radius RConsider a coil with radius R and current I

0

4I ddB

Rµ θ

π=

20

0 4I dB dB

R

π µ θπ

= =∫ ∫

( )2

0 0

0

24 4

I IdR R

πµ µθ ππ π

= =∫

II

sd

0 into page2

IR

µ=B

Page 21: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

27P15-

Example : Coil of Radius R

Notes:•This is an EASY Biot-Savart problem:

• No vectors involved•This is what I would expect on exam

II

PI

page into2

0

RIµ

=B

Page 22: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

29P15-

Group Problem:B Field from Coil of Radius R

Consider a coil with radius R and carrying a current I

WARNING:This is much harder than what I just did! Why??

What is B at point P?

Page 23: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-39

Page 24: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-37

Page 25: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-38

Page 26: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-43

Page 27: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-42

Page 28: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

2P18-

Review:Right Hand Rules

1. Torque: Thumb = torque, fingers show rotation2. Feel: Thumb = I, Fingers = B, Palm = F3. Create: Thumb = I, Fingers (curl) = B4. Moment: Fingers (curl) = I, Thumb = Moment

Page 29: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

20P18-

The Biot-Savart LawCurrent element of length ds carrying current Iproduces a magnetic field:

20 ˆ

4 rdI rsBd ×

=πµ

Page 30: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

23P18-

Ampere’s Law: The IdeaIn order to have a B field around a loop, there must be current punching through the loop

Page 31: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

24P18-

Ampere’s Law: The Equation

The line integral is around any closed contour bounding an open surface S.

Ienc is current through S:

∫ =⋅ encId 0µsB

encS

I d= ⋅∫ J A

Page 32: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-6

Page 33: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-7

Page 34: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

26P18-

Biot-Savart vs. Ampere

Biot-Savart Law

general current sourceex: finite wire

wire loop

Ampere’s law

symmetriccurrent source

ex: infinite wireinfinite current sheet

02

ˆ4I d

rµπ

×= ∫

s rB

∫ =⋅ encId 0µsB

Page 35: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

27P18-

Applying Ampere’s Law1. Identify regions in which to calculate B field

Get B direction by right hand rule2. Choose Amperian Loops S: Symmetry

B is 0 or constant on the loop!3. Calculate 4. Calculate current enclosed by loop S5. Apply Ampere’s Law to solve for B

∫ ⋅ sB d

∫ =⋅ encId 0µsB

Page 36: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

28P18-

Always True, Occasionally Useful

Like Gauss’s Law, Ampere’s Law is always true

However, it is only useful for calculation in certain specific situations, involving highly symmetric currents. Here are examples…

Page 37: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-10

Page 38: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

29P18-

Example: Infinite Wire

I A cylindrical conductor has radius R and a uniform current density with total current I

Find B everywhere

Two regions:(1) outside wire (r ≥ R)(2) inside wire (r < R)

Page 39: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

30P18-

Ampere’s Law Example:Infinite Wire

I

I

B

Amperian Loop:B is Constant & ParallelI Penetrates

Page 40: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

31P18-

Example: Wire of Radius RRegion 1: Outside wire (r ≥ R)

d⋅∫ B s

ckwisecounterclo2

0

rI

πµ

=B

B d= ∫ s ( )2B rπ=

0 encIµ= 0Iµ=

Cylindrical symmetry Amperian CircleB-field counterclockwise

Page 41: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

32P18-

Example: Wire of Radius RRegion 2: Inside wire (r < R)

2

0 2

rIR

πµπ⎛ ⎞

= ⎜ ⎟⎝ ⎠

ckwisecounterclo2 2

0

RIr

πµ

=B

Could also say: ( )222 ; rRIJAI

RI

AIJ encenc π

ππ====

d⋅∫ B s B d= ∫ s ( )2B rπ=

0 encIµ=

Page 42: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

33P18-

Example: Wire of Radius R

20

2 RIrBin π

µ= r

IBout πµ2

0=

Page 43: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-9

Page 44: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

34P18-

Group Problem: Non-Uniform Cylindrical Wire

I A cylindrical conductor has radius R and a non-uniform current density with total current:

Find B everywhere

0RJr

=J

Page 45: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

35P18-

Applying Ampere’s LawIn Choosing Amperian Loop:• Study & Follow Symmetry• Determine Field Directions First• Think About Where Field is Zero• Loop Must

• Be Parallel to (Constant) Desired Field• Be Perpendicular to Unknown Fields• Or Be Located in Zero Field

Page 46: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

39P18-

Multiple Wire Loops

Page 47: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-12

Page 48: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-14

Page 49: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-13

Page 50: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

Figure 28-12

Page 51: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

40P18-

Multiple Wire Loops –Solenoid

Page 52: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

41P18-

Magnetic Field of Solenoid

loosely wound tightly wound

For ideal solenoid, B is uniform inside & zero outside

Page 53: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

42P18-

Magnetic Field of Ideal Solenoid

d d d d d⋅ ⋅ + ⋅ + ⋅ + ⋅∫ ∫ ∫ ∫ ∫1 2 3 4

B s = B s B s B s B s

Using Ampere’s law: Think!

along sides 2 and 4

0 along side 3

d⎧ ⊥⎪⎨

=⎪⎩

B sB

n: turn densityencI nlI=

0d Bl nlIµ⋅ = =∫ B s

00

nlIB nIl

µ µ= =/ : # turns/unit lengthn N L=

0 0 0Bl= + + +

Page 54: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

44P18-

Group Problem: Current Sheet

A sheet of current (infinite in the y & z directions, of thickness 2d in the x direction) carries a uniform current density:

Find B everywhere

ˆs J=J k

y

Page 55: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

45P18-

Ampere’s Law:Infinite Current Sheet

I

Amperian Loops:B is Constant & Parallel OR Perpendicular OR Zero

I Penetrates

B

B

Page 56: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

46P18-

Solenoid is Two Current SheetsField outside current sheet should be half of solenoid, with the substitution:

2nI dJ=

This is current per unit length (equivalent of λ, but we don’t have a symbol for it)

Page 57: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

47P18-

=2 Current Sheets

Ampere’s Law: .∫ =⋅ encId 0µsB

IB

B

X XX

X

X

XX

X

XXX

X

X

XX

X

XXXXXXXXXXXX

B

LongCircular

Symmetry(Infinite) Current Sheet

Solenoid

Torus

Page 58: Douglas C. Giancoli Chapter 28 - George Mason Universityphysics.gmu.edu/~dmaria/phys260spring2011/other sources/ch28.pdf · P15- 3 Magnetic Fields FvB = q ×B G GG Magnetic Dipoles

49P18-

Maxwell’s Equations (So Far)

0Ampere's Law:

Currents make curling Magnetic Fields

encC

d Iµ⋅ =∫ B s

Magnetic Gauss's Law: 0

No Magnetic Monopoles! (No diverging B Fields)S

d⋅ =∫∫ B A

0

Gauss's Law:

Electric charges make diverging Electric Fields

in

S

Qdε

⋅ =∫∫ E A