Double Integrals in Polar Coordinates -...

4
Double Integrals in Polar Coordinates Consider a region R described in polar coordinates as R : θ 1 θ θ 2 , r 1 r r 2 . y x r 1 r 2 θ 1 θ 2 R We can use polar coordinates to evaluate a double integral of a function f (x, y) over region R as follows. ZZ R f (x, y) dA = Z θ 2 θ 1 Z r 2 r 1 f (r cos θ,r sin θ) r dr dθ. Observe that: x = r cos θ, y = r sin θ, and dA = r dr dθ Example 1. Evaluate the double integral ZZ R (x + y) dA where R is the first quadrant region between two circles of radius 1 and 2. x y 1 2 R Solution. In polar coordinates, the region R is described as R : 0 θ π 2 , 1 r 2. Therefore, ZZ R (x + y) dA = Z π/2 0 Z 2 1 (r cos θ + r sin θ)r dr dθ = Z π/2 0 Z 2 1 r 2 (cos θ + sin θ) dr dθ = Z π/2 0 r 3 3 2 1 (cos θ + sin θ) Gilles Cazelais. Typeset with L A T E X on June 9, 2014.

Transcript of Double Integrals in Polar Coordinates -...

Page 1: Double Integrals in Polar Coordinates - Uniservepages.pacificcoast.net/~cazelais/187/integrals-polar.pdf · Double Integrals in Polar Coordinates Consider a region Rdescribed in polar

Double Integrals in Polar Coordinates

Consider a region R described in polar coordinates as

R : θ1 ≤ θ ≤ θ2, r1 ≤ r ≤ r2.y

xr1 r2θ1

θ2

R

We can use polar coordinates to evaluate a double integral of a function f(x, y) over region R asfollows. ∫∫

Rf(x, y) dA =

∫ θ2

θ1

∫ r2

r1

f(r cos θ, r sin θ) r dr dθ.

Observe that:x = r cos θ, y = r sin θ, and dA = r dr dθ

Example 1. Evaluate the double integral∫∫R

(x+ y) dA

where R is the first quadrant region between two circles of radius 1 and 2.

x

y

1 2

R

Solution. In polar coordinates, the region R is described as

R : 0 ≤ θ ≤ π

2, 1 ≤ r ≤ 2.

Therefore, ∫∫R

(x+ y) dA =

∫ π/2

0

∫ 2

1(r cos θ + r sin θ)r dr dθ

=

∫ π/2

0

∫ 2

1r2(cos θ + sin θ) dr dθ

=

∫ π/2

0

r3

3

∣∣∣∣∣2

1

(cos θ + sin θ) dθ

Gilles Cazelais. Typeset with LATEX on June 9, 2014.

Page 2: Double Integrals in Polar Coordinates - Uniservepages.pacificcoast.net/~cazelais/187/integrals-polar.pdf · Double Integrals in Polar Coordinates Consider a region Rdescribed in polar

=7

3

∫ π/2

0(cos θ + sin θ) dθ

=7

3(sin θ − cos θ)

∣∣∣π/20

=7

3(sinπ/2− cosπ/2)− 7

3(sin 0− cos 0)

=14

3

Example 2. Evaluate the double integral ∫∫Rx2 dA

over the region R described in rectangular coordinates by

R : − 3 ≤ x ≤ 3, 0 ≤ y ≤√

9− x2.

Solution. The region R corresponds to the following half-circle.

x

y

3−3 0

R

In polar coordinates it can be described as

R : 0 ≤ θ ≤ π, 0 ≤ r ≤ 3.

Therefore, ∫∫Rx2 dA =

∫ π

0

∫ 3

0(r cos θ)2 r dr dθ

=

∫ π

0

∫ 3

0r3 cos2 θ dr dθ

=

∫ π

0

r4

4

∣∣∣∣∣3

0

cos2 θ dθ

=81

4

∫ π

0cos2 θ dθ

=81

4

∫ π

0

1 + cos(2θ)

2dθ

=81

8

(θ +

sin(2θ)

2

)∣∣∣∣∣π

0

=81π

8

2

Page 3: Double Integrals in Polar Coordinates - Uniservepages.pacificcoast.net/~cazelais/187/integrals-polar.pdf · Double Integrals in Polar Coordinates Consider a region Rdescribed in polar

Example 3. Find the volume above the xy-plane and under the surface z = 4− x2 − y2.

Solution. The surface z = 4 − x2 − y2 is a paraboloid. It intersects the xy-plane at the level z = 0which is equivalent to the circle of equation x2 + y2 = 4.

y

z

x

z = 4− x2 − y2

Rx

y

2

R

In polar coordinates, we haveR : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2.

Therefore,

V =

∫∫Rz dA

=

∫∫R

(4− x2 − y2) dA

=

∫ 2π

0

∫ 2

0(4− r2) r dr dθ

=

∫ 2π

0

∫ 2

0(4r − r3) dr dθ

=

∫ 2π

0

(2r2 − r4

4

)∣∣∣∣∣2

0

=

∫ 2π

04 dθ

= 8π

Example 4. Evaluate the following double integral.∫ √20

∫ √4−x2x

(x2 + y2) dy dx

Solution. We have a double integral over a region R described in rectangular coordinates as

R : 0 ≤ x ≤√

2, x ≤ y ≤√

4− x2.

3

Page 4: Double Integrals in Polar Coordinates - Uniservepages.pacificcoast.net/~cazelais/187/integrals-polar.pdf · Double Integrals in Polar Coordinates Consider a region Rdescribed in polar

y = x

y

x2

2

0

y =√

4− x2R

√2

Evaluating this double integral is much easier if we switch to polar coordinates. In polar coordinates,the line y = x corresponds to θ = π/4 (note that π/4 = 45◦). Therefore, region R can be describedas

R :π

4≤ θ ≤ π

2, 0 ≤ r ≤ 2.

Therefore, ∫ √20

∫ √4−x2x

(x2 + y2) dy dx =

∫ π/2

π/4

∫ 2

0(r2) r dr dθ

=

∫ π/2

π/4

∫ 2

0r3 dr dθ

=

∫ π/2

π/4

r4

4

∣∣∣∣∣2

0

=

∫ π/2

π/44 dθ

= 4(π

2− π

4

)= π

4