Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar...

134
Polar Coordinates (r) Polar Coordinates (r ) in the plane are described by

Transcript of Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar...

Page 1: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Polar Coordinates (r, θ)

Polar Coordinates (r , θ) in the plane are describedby

r = distance from the origin

and

θ ∈ [0, 2π) is the counter-clockwise angle.

We make the convention

(−r, θ) = (r, θ + π).

Page 2: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Polar Coordinates (r, θ)

Polar Coordinates (r , θ) in the plane are describedby

r = distance from the origin

and

θ ∈ [0, 2π) is the counter-clockwise angle.

We make the convention

(−r, θ) = (r, θ + π).

Page 3: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Polar Coordinates (r, θ)

Polar Coordinates (r , θ) in the plane are describedby

r = distance from the origin

and

θ ∈ [0, 2π) is the counter-clockwise angle.

We make the convention

(−r, θ) = (r, θ + π).

Page 4: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Polar Coordinates (r, θ)

Polar Coordinates (r , θ) in the plane are describedby

r = distance from the origin

and

θ ∈ [0, 2π) is the counter-clockwise angle.

We make the convention

(−r, θ) = (r, θ + π).

Page 5: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Polar Coordinates (r, θ)

Polar Coordinates (r , θ) in the plane are describedby

r = distance from the origin

and

θ ∈ [0, 2π) is the counter-clockwise angle.

We make the convention

(−r, θ) = (r, θ + π).

Page 6: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Plotting points

Example Plot the points whose polar coordinates are given.

(a)(1, 5

π

4

)(b) (2, 3π) (c)

(2,−2

π

3

)(d)

(−3, 3

π

4

)Solution The points are plotted in Figure 3. In part (d) the point(−3, 3π

4

)is located three units from the pole in the fourth

quadrant because the angle 3π4 is in the second quadrant and

r = −3 is negative.

Page 7: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Plotting points

Example Plot the points whose polar coordinates are given.

(a)(1, 5

π

4

)(b) (2, 3π) (c)

(2,−2

π

3

)(d)

(−3, 3

π

4

)

Solution The points are plotted in Figure 3. In part (d) the point(−3, 3π

4

)is located three units from the pole in the fourth

quadrant because the angle 3π4 is in the second quadrant and

r = −3 is negative.

Page 8: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Plotting points

Example Plot the points whose polar coordinates are given.

(a)(1, 5

π

4

)(b) (2, 3π) (c)

(2,−2

π

3

)(d)

(−3, 3

π

4

)Solution The points are plotted in Figure 3.

In part (d) the point(−3, 3π

4

)is located three units from the pole in the fourth

quadrant because the angle 3π4 is in the second quadrant and

r = −3 is negative.

Page 9: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Plotting points

Example Plot the points whose polar coordinates are given.

(a)(1, 5

π

4

)(b) (2, 3π) (c)

(2,−2

π

3

)(d)

(−3, 3

π

4

)Solution The points are plotted in Figure 3. In part (d) the point(−3, 3π

4

)is located three units from the pole in the fourth

quadrant because the angle 3π4 is in the second quadrant and

r = −3 is negative.

Page 10: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Plotting points

Example Plot the points whose polar coordinates are given.

(a)(1, 5

π

4

)(b) (2, 3π) (c)

(2,−2

π

3

)(d)

(−3, 3

π

4

)Solution The points are plotted in Figure 3. In part (d) the point(−3, 3π

4

)is located three units from the pole in the fourth

quadrant because the angle 3π4 is in the second quadrant and

r = −3 is negative.

Page 11: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Coordinate conversion - Polar/Cartesian

x = r cos θ y = r sin θ

r2 = x2 + y2 tan θ = yx

Page 12: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Coordinate conversion - Polar/Cartesian

x = r cos θ y = r sin θ

r2 = x2 + y2 tan θ = yx

Page 13: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Coordinate conversion - Polar/Cartesian

x = r cos θ y = r sin θ

r2 = x2 + y2 tan θ = yx

Page 14: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.

Solution Since r = 2 and θ = π3 ,

x = r cos θ = 2 cosπ

3= 2 · 1

2= 1

y = r sin θ = 2 sinπ

3= 2 ·

√3

2=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 15: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.Solution Since r = 2 and θ = π

3 ,

x = r cos θ = 2 cosπ

3= 2 · 1

2= 1

y = r sin θ = 2 sinπ

3= 2 ·

√3

2=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 16: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.Solution Since r = 2 and θ = π

3 ,

x = r cos θ

= 2 cosπ

3= 2 · 1

2= 1

y = r sin θ = 2 sinπ

3= 2 ·

√3

2=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 17: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.Solution Since r = 2 and θ = π

3 ,

x = r cos θ = 2 cosπ

3

= 2 · 1

2= 1

y = r sin θ = 2 sinπ

3= 2 ·

√3

2=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 18: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.Solution Since r = 2 and θ = π

3 ,

x = r cos θ = 2 cosπ

3= 2 · 1

2

= 1

y = r sin θ = 2 sinπ

3= 2 ·

√3

2=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 19: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.Solution Since r = 2 and θ = π

3 ,

x = r cos θ = 2 cosπ

3= 2 · 1

2= 1

y = r sin θ = 2 sinπ

3= 2 ·

√3

2=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 20: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.Solution Since r = 2 and θ = π

3 ,

x = r cos θ = 2 cosπ

3= 2 · 1

2= 1

y

= r sin θ = 2 sinπ

3= 2 ·

√3

2=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 21: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.Solution Since r = 2 and θ = π

3 ,

x = r cos θ = 2 cosπ

3= 2 · 1

2= 1

y = r sin θ

= 2 sinπ

3= 2 ·

√3

2=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 22: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.Solution Since r = 2 and θ = π

3 ,

x = r cos θ = 2 cosπ

3= 2 · 1

2= 1

y = r sin θ = 2 sinπ

3

= 2 ·√

3

2=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 23: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.Solution Since r = 2 and θ = π

3 ,

x = r cos θ = 2 cosπ

3= 2 · 1

2= 1

y = r sin θ = 2 sinπ

3= 2 ·

√3

2

=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 24: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.Solution Since r = 2 and θ = π

3 ,

x = r cos θ = 2 cosπ

3= 2 · 1

2= 1

y = r sin θ = 2 sinπ

3= 2 ·

√3

2=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 25: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Convert the point(2, π

3

)from polar to

Cartesian coordinates.Solution Since r = 2 and θ = π

3 ,

x = r cos θ = 2 cosπ

3= 2 · 1

2= 1

y = r sin θ = 2 sinπ

3= 2 ·

√3

2=√

3

Therefore, the point is (1,√

3) in Cartesiancoordinates.

Page 26: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Represent the point with Cartesiancoordinates (1,−1) in terms of polar coordinates.

Solution If we choose r to be positive, then

r =√

x2 + y 2 =√

12 + (−1)2 =√

2

tan θ =y

x= −1

Since the point (1,−1) lies in the fourth quadrant,we choose θ = −π

4 or θ = 7 π4 . Thus, one possible

answer is(√

2,−π4

); another is

(√2, 7 π

4

).

Page 27: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Represent the point with Cartesiancoordinates (1,−1) in terms of polar coordinates.Solution If we choose r to be positive, then

r

=√

x2 + y 2 =√

12 + (−1)2 =√

2

tan θ =y

x= −1

Since the point (1,−1) lies in the fourth quadrant,we choose θ = −π

4 or θ = 7 π4 . Thus, one possible

answer is(√

2,−π4

); another is

(√2, 7 π

4

).

Page 28: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Represent the point with Cartesiancoordinates (1,−1) in terms of polar coordinates.Solution If we choose r to be positive, then

r =√

x2 + y 2

=√

12 + (−1)2 =√

2

tan θ =y

x= −1

Since the point (1,−1) lies in the fourth quadrant,we choose θ = −π

4 or θ = 7 π4 . Thus, one possible

answer is(√

2,−π4

); another is

(√2, 7 π

4

).

Page 29: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Represent the point with Cartesiancoordinates (1,−1) in terms of polar coordinates.Solution If we choose r to be positive, then

r =√

x2 + y 2 =√

12 + (−1)2

=√

2

tan θ =y

x= −1

Since the point (1,−1) lies in the fourth quadrant,we choose θ = −π

4 or θ = 7 π4 . Thus, one possible

answer is(√

2,−π4

); another is

(√2, 7 π

4

).

Page 30: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Represent the point with Cartesiancoordinates (1,−1) in terms of polar coordinates.Solution If we choose r to be positive, then

r =√

x2 + y 2 =√

12 + (−1)2 =√

2

tan θ =y

x= −1

Since the point (1,−1) lies in the fourth quadrant,we choose θ = −π

4 or θ = 7 π4 . Thus, one possible

answer is(√

2,−π4

); another is

(√2, 7 π

4

).

Page 31: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Represent the point with Cartesiancoordinates (1,−1) in terms of polar coordinates.Solution If we choose r to be positive, then

r =√

x2 + y 2 =√

12 + (−1)2 =√

2

tan θ

=y

x= −1

Since the point (1,−1) lies in the fourth quadrant,we choose θ = −π

4 or θ = 7 π4 . Thus, one possible

answer is(√

2,−π4

); another is

(√2, 7 π

4

).

Page 32: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Represent the point with Cartesiancoordinates (1,−1) in terms of polar coordinates.Solution If we choose r to be positive, then

r =√

x2 + y 2 =√

12 + (−1)2 =√

2

tan θ =y

x

= −1

Since the point (1,−1) lies in the fourth quadrant,we choose θ = −π

4 or θ = 7 π4 . Thus, one possible

answer is(√

2,−π4

); another is

(√2, 7 π

4

).

Page 33: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Represent the point with Cartesiancoordinates (1,−1) in terms of polar coordinates.Solution If we choose r to be positive, then

r =√

x2 + y 2 =√

12 + (−1)2 =√

2

tan θ =y

x= −1

Since the point (1,−1) lies in the fourth quadrant,we choose θ = −π

4 or θ = 7 π4 . Thus, one possible

answer is(√

2,−π4

); another is

(√2, 7 π

4

).

Page 34: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Represent the point with Cartesiancoordinates (1,−1) in terms of polar coordinates.Solution If we choose r to be positive, then

r =√

x2 + y 2 =√

12 + (−1)2 =√

2

tan θ =y

x= −1

Since the point (1,−1) lies in the fourth quadrant,we choose θ = −π

4 or θ = 7 π4 .

Thus, one possible

answer is(√

2,−π4

); another is

(√2, 7 π

4

).

Page 35: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Represent the point with Cartesiancoordinates (1,−1) in terms of polar coordinates.Solution If we choose r to be positive, then

r =√

x2 + y 2 =√

12 + (−1)2 =√

2

tan θ =y

x= −1

Since the point (1,−1) lies in the fourth quadrant,we choose θ = −π

4 or θ = 7 π4 . Thus, one possible

answer is(√

2,−π4

); another is

(√2, 7 π

4

).

Page 36: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Graph of a polar equation

Definition The graph of a polar equationr = f (θ), or more generally F (r , θ) = 0, consists ofall points P that have at least one polarrepresentation (r , θ) whose coordinates satisfy theequation.

Page 37: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example What curve is represented by the polarequation r = 2?

Solution The curve consists of all points (r, θ) withr = 2. Since r represents the distance from thepoint to the pole, the curve r = 2 represents thecircle with center O and radius 2. In general, theequation r = a represents a circle with center O andradius |a|.

Page 38: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example What curve is represented by the polarequation r = 2?Solution The curve consists of all points (r, θ) withr = 2.

Since r represents the distance from thepoint to the pole, the curve r = 2 represents thecircle with center O and radius 2. In general, theequation r = a represents a circle with center O andradius |a|.

Page 39: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example What curve is represented by the polarequation r = 2?Solution The curve consists of all points (r, θ) withr = 2. Since r represents the distance from thepoint to the pole, the curve r = 2 represents thecircle with center O and radius 2.

In general, theequation r = a represents a circle with center O andradius |a|.

Page 40: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example What curve is represented by the polarequation r = 2?Solution The curve consists of all points (r, θ) withr = 2. Since r represents the distance from thepoint to the pole, the curve r = 2 represents thecircle with center O and radius 2. In general, theequation r = a represents a circle with center O andradius |a|.

Page 41: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example What curve is represented by the polarequation r = 2?Solution The curve consists of all points (r, θ) withr = 2. Since r represents the distance from thepoint to the pole, the curve r = 2 represents thecircle with center O and radius 2. In general, theequation r = a represents a circle with center O andradius |a|.

Page 42: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Sketch the curve with polar equation r = 2 cos θ.

Solution Plotting points we find what seems to bea circle:

Page 43: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Sketch the curve with polar equation r = 2 cos θ.Solution Plotting points we find what seems to bea circle:

Page 44: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Sketch the curve with polar equation r = 2 cos θ.Solution Plotting points we find what seems to bea circle:

Page 45: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the Cartesian coordinates forr = 2 cos θ.

Solution Since x = r cos θ, the equation r = 2 cos θ

becomes r = 2xr or

2x = r 2 = x2 + y 2

orx2 − 2x + y 2 = 0

or(x − 1)2 + y 2 = 1.

This is the equation of a circle of radius 1 centeredat (1, 0).

Page 46: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the Cartesian coordinates forr = 2 cos θ.Solution Since x = r cos θ, the equation r = 2 cos θ

becomes r = 2xr or

2x = r 2 = x2 + y 2

orx2 − 2x + y 2 = 0

or(x − 1)2 + y 2 = 1.

This is the equation of a circle of radius 1 centeredat (1, 0).

Page 47: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the Cartesian coordinates forr = 2 cos θ.Solution Since x = r cos θ, the equation r = 2 cos θ

becomes r = 2xr or

2x

= r 2 = x2 + y 2

orx2 − 2x + y 2 = 0

or(x − 1)2 + y 2 = 1.

This is the equation of a circle of radius 1 centeredat (1, 0).

Page 48: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the Cartesian coordinates forr = 2 cos θ.Solution Since x = r cos θ, the equation r = 2 cos θ

becomes r = 2xr or

2x = r 2

= x2 + y 2

orx2 − 2x + y 2 = 0

or(x − 1)2 + y 2 = 1.

This is the equation of a circle of radius 1 centeredat (1, 0).

Page 49: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the Cartesian coordinates forr = 2 cos θ.Solution Since x = r cos θ, the equation r = 2 cos θ

becomes r = 2xr or

2x = r 2 = x2 + y 2

orx2 − 2x + y 2 = 0

or(x − 1)2 + y 2 = 1.

This is the equation of a circle of radius 1 centeredat (1, 0).

Page 50: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the Cartesian coordinates forr = 2 cos θ.Solution Since x = r cos θ, the equation r = 2 cos θ

becomes r = 2xr or

2x = r 2 = x2 + y 2

orx2 − 2x + y 2 = 0

or(x − 1)2 + y 2 = 1.

This is the equation of a circle of radius 1 centeredat (1, 0).

Page 51: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the Cartesian coordinates forr = 2 cos θ.Solution Since x = r cos θ, the equation r = 2 cos θ

becomes r = 2xr or

2x = r 2 = x2 + y 2

orx2 − 2x + y 2 = 0

or(x − 1)2 + y 2 = 1.

This is the equation of a circle of radius 1 centeredat (1, 0).

Page 52: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the Cartesian coordinates forr = 2 cos θ.Solution Since x = r cos θ, the equation r = 2 cos θ

becomes r = 2xr or

2x = r 2 = x2 + y 2

orx2 − 2x + y 2 = 0

or(x − 1)2 + y 2 = 1.

This is the equation of a circle of radius 1 centeredat (1, 0).

Page 53: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Cardioid

Example Sketch the curve r = 1 + sin θ.

Thiscurve is called a cardioid. Solution

Page 54: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Cardioid

Example Sketch the curve r = 1 + sin θ. Thiscurve is called a cardioid.

Solution

Page 55: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Cardioid

Example Sketch the curve r = 1 + sin θ. Thiscurve is called a cardioid. Solution

Page 56: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Cardioid

Example Sketch the curve r = 1 + sin θ. Thiscurve is called a cardioid. Solution

Page 57: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Four-leaved rose

Example Sketch the curve r = cos 2θ.

This curveis called a four-leaved rose. Solution

Page 58: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Four-leaved rose

Example Sketch the curve r = cos 2θ. This curveis called a four-leaved rose.

Solution

Page 59: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Four-leaved rose

Example Sketch the curve r = cos 2θ. This curveis called a four-leaved rose. Solution

Page 60: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Four-leaved rose

Example Sketch the curve r = cos 2θ. This curveis called a four-leaved rose. Solution

Page 61: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as aparameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves andthe Product Rule, we have

dy

dx=

dydθdxdθ

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

We locate horizontal tangents by finding the points wheredydθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dxdθ = 0 (provided that dy

dθ 6= 0).

Page 62: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as aparameter and write its parametric equations as

x = r cos θ

= f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves andthe Product Rule, we have

dy

dx=

dydθdxdθ

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

We locate horizontal tangents by finding the points wheredydθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dxdθ = 0 (provided that dy

dθ 6= 0).

Page 63: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as aparameter and write its parametric equations as

x = r cos θ = f(θ) cos θ

y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves andthe Product Rule, we have

dy

dx=

dydθdxdθ

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

We locate horizontal tangents by finding the points wheredydθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dxdθ = 0 (provided that dy

dθ 6= 0).

Page 64: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as aparameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ

= f(θ) sin θ

Then, using the method for finding slopes of parametric curves andthe Product Rule, we have

dy

dx=

dydθdxdθ

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

We locate horizontal tangents by finding the points wheredydθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dxdθ = 0 (provided that dy

dθ 6= 0).

Page 65: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as aparameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves andthe Product Rule, we have

dy

dx=

dydθdxdθ

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

We locate horizontal tangents by finding the points wheredydθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dxdθ = 0 (provided that dy

dθ 6= 0).

Page 66: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as aparameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves andthe Product Rule, we have

dy

dx=

dydθdxdθ

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

We locate horizontal tangents by finding the points wheredydθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dxdθ = 0 (provided that dy

dθ 6= 0).

Page 67: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as aparameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves andthe Product Rule, we have

dy

dx

=dydθdxdθ

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

We locate horizontal tangents by finding the points wheredydθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dxdθ = 0 (provided that dy

dθ 6= 0).

Page 68: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as aparameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves andthe Product Rule, we have

dy

dx=

dydθdxdθ

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

We locate horizontal tangents by finding the points wheredydθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dxdθ = 0 (provided that dy

dθ 6= 0).

Page 69: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as aparameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves andthe Product Rule, we have

dy

dx=

dydθdxdθ

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

We locate horizontal tangents by finding the points wheredydθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dxdθ = 0 (provided that dy

dθ 6= 0).

Page 70: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as aparameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves andthe Product Rule, we have

dy

dx=

dydθdxdθ

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

We locate horizontal tangents by finding the points wheredydθ = 0 (provided that dx

dθ 6= 0.)

Likewise, we locate vertical

tangents at the points where dxdθ = 0 (provided that dy

dθ 6= 0).

Page 71: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Tangents to Polar Curves

To find a tangent line to a polar curve r = f(θ) we regard θ as aparameter and write its parametric equations as

x = r cos θ = f(θ) cos θ y = r sin θ = f(θ) sin θ

Then, using the method for finding slopes of parametric curves andthe Product Rule, we have

dy

dx=

dydθdxdθ

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

We locate horizontal tangents by finding the points wheredydθ = 0 (provided that dx

dθ 6= 0.) Likewise, we locate vertical

tangents at the points where dxdθ = 0 (provided that dy

dθ 6= 0).

Page 72: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 .

Solution

dy

dx=

drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 isdy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)=

1 +√

3

−1−√

3= −1

Page 73: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 . Solution

dy

dx

=drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 isdy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)=

1 +√

3

−1−√

3= −1

Page 74: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 . Solution

dy

dx=

drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 isdy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)=

1 +√

3

−1−√

3= −1

Page 75: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 . Solution

dy

dx=

drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 isdy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)=

1 +√

3

−1−√

3= −1

Page 76: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 . Solution

dy

dx=

drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ

=cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 isdy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)=

1 +√

3

−1−√

3= −1

Page 77: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 . Solution

dy

dx=

drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 isdy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)=

1 +√

3

−1−√

3= −1

Page 78: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 . Solution

dy

dx=

drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 is

dy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)=

1 +√

3

−1−√

3= −1

Page 79: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 . Solution

dy

dx=

drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 isdy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)=

1 +√

3

−1−√

3= −1

Page 80: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 . Solution

dy

dx=

drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 isdy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)=

1 +√

3

−1−√

3= −1

Page 81: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 . Solution

dy

dx=

drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 isdy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)

=1 +

√3

−1−√

3= −1

Page 82: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 . Solution

dy

dx=

drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 isdy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)=

1 +√

3

−1−√

3

= −1

Page 83: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example For the cardioid r = 1 + sin θ find theslope of the tangent line when θ = π

3 . Solution

dy

dx=

drdθ sin θ + r cos θdrdθ cos θ − r sin θ

=cos θ sin θ + (1 + sin θ) cos θ

cos θ cos θ − (1 + sin θ) sin θ

=cos θ(1 + 2 sin θ)

1− 2 sin2 θ − sin θ=

cos θ(1 + 2 sin θ)

(1 + sin θ)(1− 2 sin θ)

The slope of the tangent at the point whereθ = π

3 isdy

dx

∣∣∣∣θ= π

3

=cos

(π3

)(1 + 2 sin

(π3

))

(1 + sin(

π3

))(1− 2 sin

(π3

))

=12 (1 +

√3)

(1 +√

32 )(1−

√3)

=1 +

√3

(2 +√

3)(1−√

3)=

1 +√

3

−1−√

3= −1

Page 84: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Area under a polar graph r = f(θ)

The area of a region ”under” a polar function

r = f(θ) is described by either of the following

formulas.

These formulas arise from the fact that

the area of a θ1 ≤ θ ≤ θ2 portion of a circle of

radius r is given by 12(θ2 − θ1)r

2.

A =∫ ba

12[f(θ)]2 dθ,

A =∫ ba

12r

2 dθ,

Also see the two figures below.

Page 85: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Area under a polar graph r = f(θ)

The area of a region ”under” a polar function

r = f(θ) is described by either of the following

formulas. These formulas arise from the fact that

the area of a θ1 ≤ θ ≤ θ2 portion of a circle of

radius r is given by 12(θ2 − θ1)r

2.

A =∫ ba

12[f(θ)]2 dθ,

A =∫ ba

12r

2 dθ,

Also see the two figures below.

Page 86: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Area under a polar graph r = f(θ)

The area of a region ”under” a polar function

r = f(θ) is described by either of the following

formulas. These formulas arise from the fact that

the area of a θ1 ≤ θ ≤ θ2 portion of a circle of

radius r is given by 12(θ2 − θ1)r

2.

A =∫ ba

12[f(θ)]2 dθ,

A =∫ ba

12r

2 dθ,

Also see the two figures below.

Page 87: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Area under a polar graph r = f(θ)

The area of a region ”under” a polar function

r = f(θ) is described by either of the following

formulas. These formulas arise from the fact that

the area of a θ1 ≤ θ ≤ θ2 portion of a circle of

radius r is given by 12(θ2 − θ1)r

2.

A =∫ ba

12[f(θ)]2 dθ,

A =∫ ba

12r

2 dθ,

Also see the two figures below.

Page 88: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Area under a polar graph r = f(θ)

The area of a region ”under” a polar function

r = f(θ) is described by either of the following

formulas. These formulas arise from the fact that

the area of a θ1 ≤ θ ≤ θ2 portion of a circle of

radius r is given by 12(θ2 − θ1)r

2.

A =∫ ba

12[f(θ)]2 dθ,

A =∫ ba

12r

2 dθ,

Also see the two figures below.

Page 89: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Area under a polar graph r = f(θ)

Page 90: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Area under a polar graph r = f(θ)

Page 91: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the area enclosed by one loop ofthe four-leaved rose r = cos 2θ.

Solution Firstrecall the picture of this curve:

By our area formulas,

Area =

∫ π4

−π4

1

2r2 dθ =

1

2

∫ π4

−π4

cos2 2θ dθ =1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

1

2(1 + cos 4θ)dθ =

1

4(θ +

1

4sin 4θ)

∣∣∣∣π4

−π4

8.

Page 92: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the area enclosed by one loop ofthe four-leaved rose r = cos 2θ. Solution Firstrecall the picture of this curve:

By our area formulas,

Area =

∫ π4

−π4

1

2r2 dθ =

1

2

∫ π4

−π4

cos2 2θ dθ =1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

1

2(1 + cos 4θ)dθ =

1

4(θ +

1

4sin 4θ)

∣∣∣∣π4

−π4

8.

Page 93: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the area enclosed by one loop ofthe four-leaved rose r = cos 2θ. Solution Firstrecall the picture of this curve:

By our area formulas,

Area =

∫ π4

−π4

1

2r2 dθ =

1

2

∫ π4

−π4

cos2 2θ dθ =1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

1

2(1 + cos 4θ)dθ =

1

4(θ +

1

4sin 4θ)

∣∣∣∣π4

−π4

8.

Page 94: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the area enclosed by one loop ofthe four-leaved rose r = cos 2θ. Solution Firstrecall the picture of this curve:

By our area formulas,

Area =

∫ π4

−π4

1

2r2 dθ =

1

2

∫ π4

−π4

cos2 2θ dθ =1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

1

2(1 + cos 4θ)dθ =

1

4(θ +

1

4sin 4θ)

∣∣∣∣π4

−π4

8.

Page 95: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the area enclosed by one loop ofthe four-leaved rose r = cos 2θ. Solution Firstrecall the picture of this curve:

By our area formulas,

Area

=

∫ π4

−π4

1

2r2 dθ =

1

2

∫ π4

−π4

cos2 2θ dθ =1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

1

2(1 + cos 4θ)dθ =

1

4(θ +

1

4sin 4θ)

∣∣∣∣π4

−π4

8.

Page 96: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the area enclosed by one loop ofthe four-leaved rose r = cos 2θ. Solution Firstrecall the picture of this curve:

By our area formulas,

Area =

∫ π4

−π4

1

2r2 dθ

=1

2

∫ π4

−π4

cos2 2θ dθ =1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

1

2(1 + cos 4θ)dθ =

1

4(θ +

1

4sin 4θ)

∣∣∣∣π4

−π4

8.

Page 97: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the area enclosed by one loop ofthe four-leaved rose r = cos 2θ. Solution Firstrecall the picture of this curve:

By our area formulas,

Area =

∫ π4

−π4

1

2r2 dθ =

1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

1

2(1 + cos 4θ)dθ =

1

4(θ +

1

4sin 4θ)

∣∣∣∣π4

−π4

8.

Page 98: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the area enclosed by one loop ofthe four-leaved rose r = cos 2θ. Solution Firstrecall the picture of this curve:

By our area formulas,

Area =

∫ π4

−π4

1

2r2 dθ =

1

2

∫ π4

−π4

cos2 2θ dθ =1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

1

2(1 + cos 4θ)dθ =

1

4(θ +

1

4sin 4θ)

∣∣∣∣π4

−π4

8.

Page 99: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the area enclosed by one loop ofthe four-leaved rose r = cos 2θ. Solution Firstrecall the picture of this curve:

By our area formulas,

Area =

∫ π4

−π4

1

2r2 dθ =

1

2

∫ π4

−π4

cos2 2θ dθ =1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

1

2(1 + cos 4θ)dθ

=1

4(θ +

1

4sin 4θ)

∣∣∣∣π4

−π4

8.

Page 100: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the area enclosed by one loop ofthe four-leaved rose r = cos 2θ. Solution Firstrecall the picture of this curve:

By our area formulas,

Area =

∫ π4

−π4

1

2r2 dθ =

1

2

∫ π4

−π4

cos2 2θ dθ =1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

1

2(1 + cos 4θ)dθ =

1

4(θ +

1

4sin 4θ)

∣∣∣∣π4

−π4

8.

Page 101: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Example Find the area enclosed by one loop ofthe four-leaved rose r = cos 2θ. Solution Firstrecall the picture of this curve:

By our area formulas,

Area =

∫ π4

−π4

1

2r2 dθ =

1

2

∫ π4

−π4

cos2 2θ dθ =1

2

∫ π4

−π4

cos2 2θ dθ

=1

2

∫ π4

−π4

1

2(1 + cos 4θ)dθ =

1

4(θ +

1

4sin 4θ)

∣∣∣∣π4

−π4

8.

Page 102: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Speed and length

Definition The velocity vector of a curveC(t) = (x(t), y(t)) is

C′(t) = (x′(t), y′(t)). Thespeed of C(t) iss(t) = |C′(t)| =

√(x′(t))2 + (y′(t))2.

Since the integral of the speed is the distancetraveled or length for C : [a,b] → R2,

Length of a curve(C) =

∫ b

a

s(t) dt

=

∫ b

a

√(x′(t))2 + (y′(t))2 dt.

Page 103: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Speed and length

Definition The velocity vector of a curveC(t) = (x(t), y(t)) is C′(t) = (x′(t), y′(t)).

Thespeed of C(t) iss(t) = |C′(t)| =

√(x′(t))2 + (y′(t))2.

Since the integral of the speed is the distancetraveled or length for C : [a,b] → R2,

Length of a curve(C) =

∫ b

a

s(t) dt

=

∫ b

a

√(x′(t))2 + (y′(t))2 dt.

Page 104: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Speed and length

Definition The velocity vector of a curveC(t) = (x(t), y(t)) is C′(t) = (x′(t), y′(t)). Thespeed of C(t) is

s(t) = |C′(t)| =√

(x′(t))2 + (y′(t))2.Since the integral of the speed is the distancetraveled or length for C : [a,b] → R2,

Length of a curve(C) =

∫ b

a

s(t) dt

=

∫ b

a

√(x′(t))2 + (y′(t))2 dt.

Page 105: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Speed and length

Definition The velocity vector of a curveC(t) = (x(t), y(t)) is C′(t) = (x′(t), y′(t)). Thespeed of C(t) iss(t) = |C′(t)|

=√

(x′(t))2 + (y′(t))2.Since the integral of the speed is the distancetraveled or length for C : [a,b] → R2,

Length of a curve(C) =

∫ b

a

s(t) dt

=

∫ b

a

√(x′(t))2 + (y′(t))2 dt.

Page 106: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Speed and length

Definition The velocity vector of a curveC(t) = (x(t), y(t)) is C′(t) = (x′(t), y′(t)). Thespeed of C(t) iss(t) = |C′(t)| =

√(x′(t))2 + (y′(t))2.

Since the integral of the speed is the distancetraveled or length for C : [a,b] → R2,

Length of a curve(C) =

∫ b

a

s(t) dt

=

∫ b

a

√(x′(t))2 + (y′(t))2 dt.

Page 107: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Speed and length

Definition The velocity vector of a curveC(t) = (x(t), y(t)) is C′(t) = (x′(t), y′(t)). Thespeed of C(t) iss(t) = |C′(t)| =

√(x′(t))2 + (y′(t))2.

Since the integral of the speed is the distancetraveled or length for C : [a,b] → R2,

Length of a curve(C) =

∫ b

a

s(t) dt

=

∫ b

a

√(x′(t))2 + (y′(t))2 dt.

Page 108: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Speed and length

Definition The velocity vector of a curveC(t) = (x(t), y(t)) is C′(t) = (x′(t), y′(t)). Thespeed of C(t) iss(t) = |C′(t)| =

√(x′(t))2 + (y′(t))2.

Since the integral of the speed is the distancetraveled or length for C : [a,b] → R2,

Length of a curve(C)

=

∫ b

a

s(t) dt

=

∫ b

a

√(x′(t))2 + (y′(t))2 dt.

Page 109: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Speed and length

Definition The velocity vector of a curveC(t) = (x(t), y(t)) is C′(t) = (x′(t), y′(t)). Thespeed of C(t) iss(t) = |C′(t)| =

√(x′(t))2 + (y′(t))2.

Since the integral of the speed is the distancetraveled or length for C : [a,b] → R2,

Length of a curve(C) =

∫ b

a

s(t) dt

=

∫ b

a

√(x′(t))2 + (y′(t))2 dt.

Page 110: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Speed and length

Definition The velocity vector of a curveC(t) = (x(t), y(t)) is C′(t) = (x′(t), y′(t)). Thespeed of C(t) iss(t) = |C′(t)| =

√(x′(t))2 + (y′(t))2.

Since the integral of the speed is the distancetraveled or length for C : [a,b] → R2,

Length of a curve(C) =

∫ b

a

s(t) dt

=

∫ b

a

√(x′(t))2 + (y′(t))2 dt.

Page 111: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞.

Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 112: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 113: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:

c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 114: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)).

So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 115: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t)

=−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 116: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t).

Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 117: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)|

which is equal to√

(x′(t))2 + (y′(t))2 and the length isthe integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 118: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2

and the length isthe integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 119: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:

∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 120: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 121: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt

= lımt→∞

−√

2e−t∣∣∣t0

=√

2.

Page 122: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 123: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Problem 30 As the parameter t increases forever, starting att = 0, the curve with parametric equations{

x = e−t cos t,y = e−t sin t

spirals inward toward the origin, getting ever closer to the origin (butnever actually reaching) as t →∞. Find the length of this spiral curve.

Solution The tangent vector to the curvec(t) = (x(t), y(t)) = (e−t cos t, e−t sin t| is c′(t) and it is found bytaking the derivative of the coordinate functions:c′(t) = (x′(t), y′(t)). So,c′(t) = (−e−t cos t− e−t sin t,−e−t sin t + e−t cos t) =−e−t(cos t + sin t, sin t− cos t). Recall that the speed s(t) of c(t)is |c′(t)| which is equal to

√(x′(t))2 + (y′(t))2 and the length is

the integral of the speed:∫ ∞

0

√e−2t(cos2 t + sin2 t + 2 cos t sin t + sin2 t + cos2 t− 2 cos t sin t)dt

=

∫ ∞

0e−t

√2 dt = lım

t→∞−√

2e−t∣∣∣t0

=√

2.

Page 124: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Length formula

In polar coordinates x = r cos θ, y = r sin θ.

Then

dx

dθ=

dr

dθcos θ − r sin θ

dy

dθ=

dr

dθsin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get(dx

)2

+

(dy

)2

=

(dr

)2

cos2 θ − 2rdr

dθcos θ sin θ + r2 sin2 θ

+

(dr

)2

sin2 θ + 2rdr

dθsin θ cos θ + r2 sin2 θ

=

(dr

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√r2 +

(dr

)2

dθ.

Page 125: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Length formula

In polar coordinates x = r cos θ, y = r sin θ. Then

dx

=dr

dθcos θ − r sin θ

dy

dθ=

dr

dθsin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get(dx

)2

+

(dy

)2

=

(dr

)2

cos2 θ − 2rdr

dθcos θ sin θ + r2 sin2 θ

+

(dr

)2

sin2 θ + 2rdr

dθsin θ cos θ + r2 sin2 θ

=

(dr

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√r2 +

(dr

)2

dθ.

Page 126: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Length formula

In polar coordinates x = r cos θ, y = r sin θ. Then

dx

dθ=

dr

dθcos θ − r sin θ

dy

dθ=

dr

dθsin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get(dx

)2

+

(dy

)2

=

(dr

)2

cos2 θ − 2rdr

dθcos θ sin θ + r2 sin2 θ

+

(dr

)2

sin2 θ + 2rdr

dθsin θ cos θ + r2 sin2 θ

=

(dr

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√r2 +

(dr

)2

dθ.

Page 127: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Length formula

In polar coordinates x = r cos θ, y = r sin θ. Then

dx

dθ=

dr

dθcos θ − r sin θ

dy

=dr

dθsin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get(dx

)2

+

(dy

)2

=

(dr

)2

cos2 θ − 2rdr

dθcos θ sin θ + r2 sin2 θ

+

(dr

)2

sin2 θ + 2rdr

dθsin θ cos θ + r2 sin2 θ

=

(dr

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√r2 +

(dr

)2

dθ.

Page 128: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Length formula

In polar coordinates x = r cos θ, y = r sin θ. Then

dx

dθ=

dr

dθcos θ − r sin θ

dy

dθ=

dr

dθsin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get(dx

)2

+

(dy

)2

=

(dr

)2

cos2 θ − 2rdr

dθcos θ sin θ + r2 sin2 θ

+

(dr

)2

sin2 θ + 2rdr

dθsin θ cos θ + r2 sin2 θ

=

(dr

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√r2 +

(dr

)2

dθ.

Page 129: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Length formula

In polar coordinates x = r cos θ, y = r sin θ. Then

dx

dθ=

dr

dθcos θ − r sin θ

dy

dθ=

dr

dθsin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get

(dx

)2

+

(dy

)2

=

(dr

)2

cos2 θ − 2rdr

dθcos θ sin θ + r2 sin2 θ

+

(dr

)2

sin2 θ + 2rdr

dθsin θ cos θ + r2 sin2 θ

=

(dr

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√r2 +

(dr

)2

dθ.

Page 130: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Length formula

In polar coordinates x = r cos θ, y = r sin θ. Then

dx

dθ=

dr

dθcos θ − r sin θ

dy

dθ=

dr

dθsin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get(dx

)2

+

(dy

)2

=

(dr

)2

cos2 θ − 2rdr

dθcos θ sin θ + r2 sin2 θ

+

(dr

)2

sin2 θ + 2rdr

dθsin θ cos θ + r2 sin2 θ

=

(dr

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√r2 +

(dr

)2

dθ.

Page 131: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Length formula

In polar coordinates x = r cos θ, y = r sin θ. Then

dx

dθ=

dr

dθcos θ − r sin θ

dy

dθ=

dr

dθsin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get(dx

)2

+

(dy

)2

=

(dr

)2

cos2 θ − 2rdr

dθcos θ sin θ + r2 sin2 θ

+

(dr

)2

sin2 θ + 2rdr

dθsin θ cos θ + r2 sin2 θ

=

(dr

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√r2 +

(dr

)2

dθ.

Page 132: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Length formula

In polar coordinates x = r cos θ, y = r sin θ. Then

dx

dθ=

dr

dθcos θ − r sin θ

dy

dθ=

dr

dθsin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get(dx

)2

+

(dy

)2

=

(dr

)2

cos2 θ − 2rdr

dθcos θ sin θ + r2 sin2 θ

+

(dr

)2

sin2 θ + 2rdr

dθsin θ cos θ + r2 sin2 θ

=

(dr

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√r2 +

(dr

)2

dθ.

Page 133: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Length formula

In polar coordinates x = r cos θ, y = r sin θ. Then

dx

dθ=

dr

dθcos θ − r sin θ

dy

dθ=

dr

dθsin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get(dx

)2

+

(dy

)2

=

(dr

)2

cos2 θ − 2rdr

dθcos θ sin θ + r2 sin2 θ

+

(dr

)2

sin2 θ + 2rdr

dθsin θ cos θ + r2 sin2 θ

=

(dr

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√r2 +

(dr

)2

dθ.

Page 134: Polar Coordinates (r,θkevrekid/132_f10/132class15.pdfExample Plot the points whose polar coordinates are given. (a) 1,5 π 4 (b) (2,3π) (c) 2,−2 π 3 (d) −3,3 π 4 Solution The

Length formula

In polar coordinates x = r cos θ, y = r sin θ. Then

dx

dθ=

dr

dθcos θ − r sin θ

dy

dθ=

dr

dθsin θ + r cos θ.

Using cos2 θ + sin2 θ = 1, we get(dx

)2

+

(dy

)2

=

(dr

)2

cos2 θ − 2rdr

dθcos θ sin θ + r2 sin2 θ

+

(dr

)2

sin2 θ + 2rdr

dθsin θ cos θ + r2 sin2 θ

=

(dr

)2

+ r2.

Thus the length L of a polar curve r = f(θ), a ≤ θ ≤ b, is:

L =

∫ b

a

√r2 +

(dr

)2

dθ.