Communications Equipment Horizontal crash

7
AAE450 Spring 2009 Communications Equipment Horizontal crash Trenten Muller Feb. 19, 2009 [Trenten Muller] [COM]

description

Communications Equipment Horizontal crash. Trenten Muller Feb. 19, 2009. New communication system suitable for all phases. Horizontal Sliding. Represents the Lander sliding on Lunar surface without skipping, digging in, or creating a crater immediately upon impact. - PowerPoint PPT Presentation

Transcript of Communications Equipment Horizontal crash

Page 1: Communications Equipment Horizontal crash

AAE450 Spring 2009

Communications Equipment

Horizontal crashTrenten MullerFeb. 19, 2009

[Trenten Muller] [COM]

Page 2: Communications Equipment Horizontal crash

AAE450 Spring 2009

New communication system suitable for all phases

All Products by SpaceQuest Model Mass (kg) Size (mm) Power (W) Voltage Temp Price ($)

Antenna AC-100 0.1 Φ33 x 44.2 NA NA NA $10,000

Receiver RX-2000S 0.2 135 X 50 X 25 1.5 6-16 VDC -30 to 75 C $30,000

Transmitter TX-2400 0.2 68 X 35 X 15

37.00Peak

transmission 8-32 VDC -20 to 70 C $24,000

Controller CSC-75 0.57 150 X 100 X 25 0.50 9-16 VDC -20 to 60 C $40,000

Total per system 1.07 kg

39.00 WPeak

transmission $ 104,000.00

Possible Flight controller IFC-100 0.2 180 X 150 X 25 0.3 3.3 VDC -10 to 60 C $50,000

[Trenten Muller] [COM]

Page 3: Communications Equipment Horizontal crash

AAE450 Spring 2009

Horizontal Sliding Represents the Lander

sliding on Lunar surface without skipping, digging in, or creating a crater immediately upon impact.

Given the unpredictable nature and the long slide distance I would advise against landing with significant horizontal velocity.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

1

2

3

4

5

6

7

horizontal velocity (km/sec)

dist

ance

(km

)

skid distance vs. horizontal velocity

10g15g20g

[Trenten Muller] [COM]

Page 4: Communications Equipment Horizontal crash

AAE450 Spring 2009

Computer Code clear all close all clc vhor = linspace(0,2500,10000); %horizontal velocity m/s % vver = linspace(0,50,1000); %vertical velocity m/s mass = 163.49; %mass of dry lander kg earthg = 9.80665; %gravitational constant of Earth m/s^2 moong = 1.622; %gravitational constant of moon m/s^2 coeff = 0.18; %coefficient of friction for regolith normf10 = mass * (moong+10*earthg); %normal force N coming in at 10g normf15 = mass * (moong+15*earthg); %normal force N coming in at 15g normf20 = mass * (moong+20*earthg); %normal force N coming in at 20g ff10 = normf10 * coeff; %frictional force N 10g ff15 = normf15 * coeff; %frictional force N 15g ff20 = normf20 * coeff; %frictional force N 20g horaccel10 = ff10 / mass; %horizontal acceleration m/s^2 10g horaccel15 = ff15 / mass; %horizontal acceleration m/s^2 15 horaccel20 = ff20 / mass; %horizontal acceleration m/s^2 20g

[Trenten Muller] [COM]

Page 5: Communications Equipment Horizontal crash

AAE450 Spring 2009

crashth10 = vhor ./ horaccel10; %time for horizontal impact s 10g crashth15 = vhor ./ horaccel15; %time for horizontal impact s 15g crashth20 = vhor ./ horaccel20; %time for horizontal impact s 20g dist10 = vhor.*crashth10-.5.*horaccel10.*crashth10.^2; %horizontal distance m 10g dist15 = vhor.*crashth15-.5.*horaccel15.*crashth15.^2; %horizontal distance m 15g dist20 = vhor.*crashth20-.5.*horaccel20.*crashth20.^2; %horizontal distance m 10g % crashtv = .01; %estimated time for vertical impact s % veraccel = -vver ./ crashtv; %vertical acceleration m/s^2 % vg = veraccel ./ -earthg; %vertical g load plot(vhor.*10^-3,dist10.*10^-3) hold on plot(vhor.*10^-3,dist15.*10^-3,'r') plot(vhor.*10^-3,dist20.*10^-3,'g') hold off

[Trenten Muller] [COM]

Page 6: Communications Equipment Horizontal crash

AAE450 Spring 2009

legend('10g','15g','20g') title('skid distance vs. horizontal velocity') ylabel('distance (km)') xlabel('horizontal velocity (km/sec)') grid on % figure(2) % plot(vver,vg) % title('g^,s vs. vertical velocity') % xlabel('vertical velocity (m/s)') % ylabel('earth g^,s') % grid on % hold on % plot(vver,15,'r')

[Trenten Muller] [COM]

Page 7: Communications Equipment Horizontal crash

AAE450 Spring 2009

References Creel et al., “Pressurized Lunar Rover,” Dept. of

Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, May 1992. ~coefficient of friction for Lunar regolith

[Trenten Muller] [COM]