CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO...

28
CLEO Measurements of the CKM Elements |V ub | and |V cb | Thomas Meyer CLEO Collaboration (Cornell University) Outline Current Situation How to Measure |V q 1 q 2 | B ’s at CLEO Getting |V cb | From B D * ‘ν Getting |V ub | From B π/ρ/ω/η ‘ν Summary and Outlook

Transcript of CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO...

Page 1: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

CLEO Measurements

of the

CKM Elements

|Vub| and |Vcb|

Thomas Meyer

CLEO Collaboration

(Cornell University)

Outline

• Current Situation

• How to Measure |Vq1q2 |

• B’s at CLEO

• Getting |Vcb| From B → D∗`ν

• Getting |Vub| From B → π/ρ/ω/η `ν

• Summary and Outlook

Page 2: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Status of |Vub| and |Vcb|

Unitary CKM matrix describes mixing between quark mass

eigenstates in (charged-current) weak interactions

V ≡

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

'

1− 1

2λ2 λ Aλ3(ρ− iη)

−λ 1− 1

2λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

• PDG 00 values:

|Vcb| = 0.0402± 0.0019 and |Vub| = (3.6± 1.0)× 10−3

• Note 4.7% error on |Vcb|I Third most accurately measured CKM element

(After |Vud| and |Vus|)

I From exclusive B → D(∗)`ν, inclusive b → c

(CLEO, LEP)

• And 28% error on |Vub| !I Based primarily on lepton endpoint measurements

I Agrees with CLEO measurements of B → π/ρ `ν

And values from LEP b → u `ν

• Branching fractions

B(b → c `ν) = 10.5% ©··̂B(b → u `ν) ∼ 2× 10−3 ©··_

Thomas Meyer 2 LLWI 18-24 Feb 2001

Page 3: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Interest in |Vub| and |Vcb|

Unitarity property (constraint) leads to famous triangle in

complex plane when applied to d and b columns

VcdV*cb

VtdV*tbVudV*

ub

α

γ β

0 0.5 1-0.5-10

0.5

1

Only this combination produces triangle with all sides of same

order O(λ3)

CKM elements define Standard Model (SM)

• |Vq1q2 | simply sets scale for all q2 → q1 transitions

• Area of triangle measures CP violation within SM

⇒ Sides—and angles—probe CP�

• |Vub| sets bound on apex ρ2 + η2, |Vcb| sets scale of base

Also provide window for testing it

• Over-constrain triangle—stress-test the theory

• Tests of unitarity ⇔ Sensitivity to new physics

Experimental measurement, however, is non-trivial . . .

Thomas Meyer 3 LLWI 18-24 Feb 2001

Page 4: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Semileptonic B Decay

Xc,u νlB

(u)d (u)

b

d

l

ν

B c,uX

Good place to study b → c, u transitions

• Leptonic physics understood and calculable

• Hadronic physics unknown—but can be parameterized with

form factors√Constraints from HQET, other symmetries√Universal to some extent

× Model-dependent

Thomas Meyer 4 LLWI 18-24 Feb 2001

Page 5: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Semileptonic B Decay—Kinematics

View as b → Wq, W → `ν

ν

w = 1

ν

q’ q’

l qlq

wmax

wmin

Kinematic variables

• w: Lorentz boost γ of X in B rest frame

w = vB · vX

• q2: Mass of virtual W , 4-mom transfer to ` ν pair

q2 = (pν + p`)2 = (pB − pX)2

At w = 1 (q2max), daughter quark q does not recoil

For heavy q, light degrees of freedom (q′ + gluons) unaware of

b → q transition (Heavy Quark Symmetry)

⇒ Theoretical calculation on sound footing

Thomas Meyer 5 LLWI 18-24 Feb 2001

Page 6: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

B’s at CLEO

9.44 9.46

Mass (GeV/c 2 )

0

5

10

15

20

25 s

(e +

e - ® H

adro

ns)(

nb) ¡ (1S)

10.00 10.02 0

5

10

15

20

25

¡ (2S)

10.34 10.37 0

5

10

15

20

25

¡ (3S)

10.54 10.58 10.62 0

5

10

15

20

25

¡ (4S)

• Symmetric e+ e− machine

I Operates on Υ(4S) resonance

I BB̄ pairs produced at threshold

Each B has only |~pB | ≈ 300 MeV/c

I Cross-sections

σ(BB̄) = 1.0 nb

σ(qq̄) = 3.1 nb

• Off-resonance (“continuum”) running 60 MeV below Υ(4S)

I Measure in data production of various “background”

processes

qq̄ (q = u, d, s, c), τ τ̄ , 2-photon, . . .

I Simply subtract these from B-physics analyses

Thomas Meyer 6 LLWI 18-24 Feb 2001

Page 7: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

CLEO

Muon Chambers

Outer Iron

Inner Iron

Return Iron

Central Drift Chamber

Magnetic CoilBarrel Crystals

Time of Flight

Endcap Crystals

Endcap Time of Flight Beam Pipe

3600398-006

Inner Drift Chamber and

Straw Tube Chamber

• CLEO II (1989) [3.3× 106 BB̄ decays]

Drift chambers, crystal calorimeter, muon counters

• CLEO II.V—Upgraded version (1996) [6.5× 106 BB̄ decays]

I Silicon detector replaces inner wire chamber

• Nearly hermetic detector

I Tracking coverage ≈ 95% of 4π

I Calorimeter coverage ≈ 98%

Thomas Meyer 7 LLWI 18-24 Feb 2001

Page 8: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Analyzing B → D∗`ν

Differential decay rate:

dw=

GF

48π3|Vcb|2F2(w)G(w)

• G(w) contains kinematics and is known

• F(w) is form factor for B → D∗

I Parameterizes non-perturbative (unknown) physics

I Absolutely normalized at zero recoil (w = 1)

i.e. F(1) provided by theory

� In mQ →∞ limit: F(1) → 1

� For B → D∗`ν, corrections only at order 1/m2c

⇒ F(1) = 0.913± 0.042 a

Basic analysis technique:

1. Fit for B → D∗`ν signal in data, in (10) bins of w

2. Measure dΓ/dw in each bin

3. Fit with functional form from phenomenology

4. Extrapolate to w = 1 and extract F(1)|Vcb|

a(PLB264,455; 338,84; PRD47,2965; 51,2217; 53,3149; PRL 76, 4124)

Thomas Meyer 8 LLWI 18-24 Feb 2001

Page 9: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Reconstructing B → D∗`ν

Fully reconstruct D∗ decay

D∗ → D0π|→ K−π+

Separate analyses for B̄0 → D∗+`ν, B− → D∗0`ν

• Backgrounds, B(D∗ → Dπ), τB different

• Eff’y for charged π± different than for neutral π0

Pion Efficiency vs. Momentum

0.00 0.125 0.25Momentum (GeV)

0.00

0.25

0.50

0.75

1.00

Effi

cien

cy

Charged πNeutral π

⇒ D∗+ analysis has preliminary results for B and F(1)|Vcb|

Thomas Meyer 9 LLWI 18-24 Feb 2001

Page 10: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Finding D∗ `’s

D∗ Finding

• D candidate from K and π tracks

• D∗ from addition of slow π

D0 → K−π+

m(K π ) [GeV]

0

100

200

300

400

500

600

700

1.7 1.75 1.8 1.85 1.9 1.95 2

D∗+ → D0π+

∆ m=m(K ππ )-m(K π ) [GeV]

0

100

200

300

400

500

0.135 0.14 0.145 0.15 0.155 0.16 0.165

D∗` pairs can arise from more than just signal4!• B → D∗X`ν

I Non-resonant B → D∗π`ν or higher resonant states, e.g.

D∗∗ → D∗π

• Other backgrounds

I Estimated in data, some input from Monte Carlo

Thomas Meyer 10 LLWI 18-24 Feb 2001

Page 11: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Fitting for the B → D∗`ν Yield

Separate signal B → D∗`ν from B → D∗X`ν with kinematics:

cos θB−D∗` =2EBED∗` −m2

B −m2D∗`

2|~pB||~pD∗`|

Signal should have cos θ ∈ [−1, 1]

Background extends to unphysical values

D*lν

cosΘB-D*l

0

5

10

15

20

25

30

35

-10 -8 -6 -4 -2 0 2 4

D*Xlν

cosΘB-D*l

0

2

4

6

8

10

12

14

16

-10 -8 -6 -4 -2 0 2 4

Binned maximum-likelihood fit to cos θB−D∗` distribution in data

• Backgrounds subtracted

• Signal shape in cosθB−D∗` from Monte Carlo

• Normalizations (= yields) allowed to float

⇒Result: B → D∗`ν and B → D∗X`ν yield in each w-bin

Thomas Meyer 11 LLWI 18-24 Feb 2001

Page 12: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Representative Fits for B̄0 → D∗+`ν

1.000<w<1.051

CosΘB-D*lCosΘB-D*lCosΘB-D*lCosΘB-D*lCosΘB-D*lCosΘB-D*lCosΘB-D*lCosΘB-D*l

correlateduncorrelatedcontinuumcombinatoricD**lνD*lν

CosΘB-D*lCosΘB-D*l

Eve

nts

0

2.5

5

7.5

10

12.5

15

17.5

20

22.5

-10 -8 -6 -4 -2 0 2 4

1.306<w<1.357

CosΘB-D*lCosΘB-D*lCosΘB-D*lCosΘB-D*lCosΘB-D*lCosΘB-D*lCosΘB-D*lCosΘB-D*l

correlateduncorrelatedcontinuumcombinatoricD**lνD*lν

CosΘB-D*lCosΘB-D*l

Eve

nts

0

20

40

60

80

100

-10 -8 -6 -4 -2 0 2 4

Thomas Meyer 12 LLWI 18-24 Feb 2001

Page 13: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

PRELIM

INARY

Fitting the Decay Rate

D*+lνFit

w

F(w

) |V

cb|

0

0.01

0.02

0.03

0.04

0.05

1 1.1 1.2 1.3 1.4 1.5

• Unfolds phase space, kinematic factors, and form factor F(w)

• Takes into account reconstruction eff’y, smearing in w

• w-dependence of F(w) from dispersion relations a

• Fit parameters essentially F(1)|Vcb| and ρ2hA1

(slope at w = 1)

F(1)|Vcb| = (42.4± 1.8± 1.9)× 10−3

ρ2hA1

= 1.67± 0.11± 0.22

• Integrating over w,

B(B̄0 → D∗+ `ν) = (5.66± 0.29± 0.33)%

aNPB530,153

Thomas Meyer 13 LLWI 18-24 Feb 2001

Page 14: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

PRELIM

INARY

Extracting |Vcb|

Form factor at zero recoil known: F(1) = 0.913± 0.042

⇒ |Vcb| = 0.0464± 0.0020± 0.0021± 0.0021 [CLEO]

• Consistent with previous CLEO, LEP measurements—but

slightly higher

Compare this result to previous ones

F(1) | V cb |

OPAL (exclusive)

OPAL ( π l)

DELPHI

ALEPH

CLEO (This Result)

28 30 32 34 36 38 40 42 44 46 48

Thomas Meyer 14 LLWI 18-24 Feb 2001

Page 15: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Challenge of |Vub|

3600198-0020.20

0.15

0.10

0.05

00 1 2 3

I

+

1/2N

d

N /

dp

(G

eV /

c)1

Lepton Momentum (GeV / c)

(4S

)

160

80

02.00 2.25 2.50 2.75

Swamped by Cabibbo-favored b → c `ν

• |Vub| > 0 first verified only in 1990

• Hard cuts required experimentally to control b → c

backgrounds—makes theoretical interpretation difficult

• Inclusive theoretical calculations only reliable when large part

of phase space is sampled—experimental measurement hard!

Tradeoff

Exclusive analysis incurs large model dependence

but

Inclusive analysis suffers from large backgrounds

Thomas Meyer 15 LLWI 18-24 Feb 2001

Page 16: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

B → Xu `ν Analysis

Analysis Goals—In progress

• Extract |Vub|

• Measure Bi and kinematics (q2) of π, ρ modes

• Consider/Evaluate range of models

• Reconstruct B → Xu `ν candidates in seven channels

π± ρ± → π±π0

π0 ρ0 → π+π−

η → π+π−π0

η → γγ ω → π+π−π0

Neutrino Reconstruction

• Conservation laws dictate that what goes in must come out

pµmiss = pµ

0 −∑

particles i

pµi

• Hermetic detector “captures” all particles

1. Charged particles—tracks + PID ⇒ pµi

2. π0, γ—unmatched showers + beamspot ⇒ pµi

• Neutrino must carry away any momentum-energy missing in

final state

⇒ pµν ≡ pµ

miss

Thomas Meyer 16 LLWI 18-24 Feb 2001

Page 17: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Neutrino Reconstruction

Must veto events with more than one missing particle

• e.g. Add’l ν, K0L, neutrons

• Lepton counting: N` > 1 ; Nν > 1

• Test neutrino hypothesis: M2miss =

?

0

Cuts out b → c `ν that misreconstructs as signal

-4 0 4 8

0

5

-4 0 4 8

0

5 No Extra Particles Extra Particles

M2miss

Em

iss

Em

iss

M2miss

Measure tracks and showers, not particles

• Must be sure to account for each particle exactly once

• Examine net charge ∆Q of event

I Easy way to detect missing tracks: |∆Q| = 0

I Include |∆Q| = 1, increases signal eff’y more than bkgrd

Ex: Slow π missed, but little impact on (Emiss, ~pmiss)

Thomas Meyer 17 LLWI 18-24 Feb 2001

Page 18: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Analysis Technique

• Continuum suppression

I Need to avoid cuts that bias q2 distribution

I θthrust: angle between Xu-` and thrust of rest of event

I Off-resonance data subtraction

• b → c `ν suppression

I Angle between ` in W rest frame and W in B frame

Reflects V − A nature of charged current

� Apply cut on cos θlep in vector modes only

I |p`| > 1.5 GeV/c (vector), 1.0 GeV/c (pseudoscalar)

� Softer ` from b → c `ν than b → u `ν

� ����� � ��� ���

Continuum� Signal MC

0 0.5-0.5-1.0 1.0

cos � lep

� Signal MC� Signal MC

b to c MC

10-1

10-1

cos � lep

Thomas Meyer 18 LLWI 18-24 Feb 2001

Page 19: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Fitting Technique

5.110 5.155 5.200 5.245 5.290

-0.4

0.0

0.4

MB (GeV)

∆E (

GeV

)

1234

56

8910

11

7

• Define variables for each B-candidate

∆E ≡ (Eν + E` + Ehad)−Ebeam

M̃B ≡√

E2beam − |α~pν + ~p` + ~phad|2

α = 1− ∆E

• Carve up ∆E −MB plane into signal box (#1) and sidebands

I Backgrounds, cross-feeds constrained by data outside signal

box, too

• Perform binned χ2 fit in ∆E −MB to extract signal yields,

background amounts in each box for each mode

Thomas Meyer 19 LLWI 18-24 Feb 2001

Page 20: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

PRELIM

INARY

Sample π-mode Fits

• Simultaneous fit for all Xu modes accounts for cross-feed and

common backgrounds

1. b → c `ν backgrounds from Monte Carlo

2. b → u `ν “other”, i.e. not in signal modes

3. Cross-feed from other signal modes into this one, from MC

4. Fakes (h 7→ `), from non-leptonic data

5. Continuum backgrounds, as measured in OFF data

6. Signal from Monte Carlo

• Use ISGW2 model here for signal and background shapes

MB ∆E

Charged and Neutral π

(∆Q = 0 only)

Thomas Meyer 20 LLWI 18-24 Feb 2001

Page 21: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

Summary

• CKM elements offer special opportunity to investigate and

test Standard Model

• CLEO has preliminary measurement of |Vcb| from

B̄0 → D∗+`ν

I |Vcb| = 0.0464± 0.0020± 0.0021± 0.0021

I Charged and neutral D∗ modes to be combined

I Systematics understood; analyses nearing completion

I Promises world’s most precise measurement from

B → D∗`ν

I New analyses using CLEO II.V dataset underway as well

• CLEO has analyses in progress on |Vub| using full dataset

I Exclusive B → π/ρ/ω/η `ν

� Promises Bi and q2 information

� Model discrimination

I Lepton-energy endpoint

� Window into essential non-perturbative physics

I |Vub| from b → sγ + E`-endpoint

I Several inclusive b → X `ν analyses in the works

Will the Standard Model hold up . . . ?

Thomas Meyer 21 LLWI 18-24 Feb 2001

Page 22: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO–R

ESE

RV

E–

B → D∗`ν Backgrounds

D∗` pairs can arise from more than just signal4!• B → D∗X`ν

I Non-resonant D∗π`ν production

I Higher resonant states, generically called D∗∗`ν

I Model with latest phenomenology

• Combinatoric—Events with D∗ resulting from 6%a

mis-reconstruction (fakes)

I Estimate magnitude from events in ∆m = MD∗ −MD

sideband

I Shape from Monte Carlo

• Continuum—e+ e− → qq̄ with real D∗ and ` 4%

I Subtracted using data taken slightly below BB̄ threshold

• Uncorrelated—D∗ and ` come from different B’s 4%

I Estimate from inclusive D∗ and ` yields

• Correlated—Real D∗ and ` from same B, 0.5%

but not signal mode

I Ex: B → D∗Ds, with Ds → X`

I Estimated from Monte Carlo

• Fake lepton—Mis-ID hadrons as `, combine with real D∗ 0.1%

I Small enough to neglectaEstimate for D∗+ modes only

Thomas Meyer 22 LLWI 18-24 Feb 2001

Page 23: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO–R

ESE

RV

E–

Estimating w

• w ∈ (1, 1.51) is Lorentz boost of the D∗ in the B rest frame

• At CESR/CLEO, B’s nearly at rest: |~pB | ≈ 300 MeV/c

• Know the magnitude but not the direction of B momentum

Determined only up to azimuthal ambiguity

• Compute estimate for w using two extreme possibilities for B

direction

pBp

p lp

D*

p D*l

Bp

p l

D*l

pD*

νp

• Resolution good: σw ≈ 0.03

Thomas Meyer 23 LLWI 18-24 Feb 2001

Page 24: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO–R

ESE

RV

E–

Checking the Fit

Projections of fit results into signal region, all w-bins combined

Cut on cos θB−D∗` applied

D∗+ Energy ED∗

ED*ED*ED*ED*ED*ED*ED*

correlated

uncorrelated

continuum

combinatoric

D*Xlν

D*lν

ED*

Eve

nts

0

50

100

150

200

250

300

350

400

2 2.2 2.4 2.6 2.8 3 3.2

Lepton Energy E`

PlPlPlPlPlPlPl

correlated

uncorrelated

continuum

combinatoric

D*Xlν

D*lν

Pl

Eve

nts

0

50

100

150

200

250

300

350

400

450

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

(Error bars on data are for data sample, and do not

include statistical errors on combinatoric and continuum

bkgrds)

Thomas Meyer 24 LLWI 18-24 Feb 2001

Page 25: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO

PRELIM

INARY

–R

ESE

RV

E–

Fitting dΓ/dw

Binned χ2 fit: (B → D∗`ν yield)i 7→ (dΓ/dw)i

χ2 =

10∑

i=1

[

Nobsi −∑10

j=1 εijNj

]2

σ2Nobs

i

• Nobsi : Yield in ith w-bin

• εij : Accounts for reconstruction eff’y, w-smearing

• Nj : number of signal decays in jth w-bin

Nj = 4fNΥ(4S) B(D∗ → Dπ) B(D → Kπ) τB

wj

dw dΓ/dw

D*+lνFit

w

Eve

nts

0

50

100

150

200

250

300

1 1.1 1.2 1.3 1.4 1.5

Thomas Meyer 25 LLWI 18-24 Feb 2001

Page 26: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO–R

ESE

RV

E–

B̄0 → D∗+`ν Systematics

Source |Vcb|F(1)(%) ρ2(%) Γ(%)

Slow π finding 3.1 3.7 2.9

Combinatoric Bkgd 1.4 1.8 1.2

Lepton ID 1.1 0.0 2.1

K, π & ` finding 1.0 0.0 1.9

Number of BB̄ events 0.9 0.0 1.8

Uncorrelated Bkgd 0.7 0.9 0.7

Correlated Bkgd 0.4 0.3 0.5

B momentum & mass 0.3 0.5 0.4

D∗X `ν model 0.2 1.9 1.9

Subtotal 3.8 4.7 5.0

R1(1) and R2(1) 1.4 12.0 1.8

B(D → Kπ) 1.2 0.0 2.3

τB 1.0 0.0 2.1

B(D∗ → Dπ) 0.4 0.0 0.7

Subtotal 2.2 12.0 3.7

Total 4.4 13 6.2

Thomas Meyer 26 LLWI 18-24 Feb 2001

Page 27: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO–R

ESE

RV

E–

|Vub| at CLEO

History

• First observation of |Vub| > 0 made in 1990

Found B → X`ν beyond kinematic endpoint for charm

• Measurement of B(B → π/ρ `ν) and |Vub| published early 1996

I Successful debut of ν–reconstruction

I Data sample of 4 fb−1

I 20% error on |Vub|—model-dependence of form factors

|Vub| = (3.3± 0.2+0.3−0.4 ± 0.7)× 10−3

• Update of B(B → ρ `ν) in 1999

|Vub| = (3.25± 0.14+0.21−0.29 ± 0.55)× 10−3

First examination of partial rate in (3) bins of q2

High |p`| cut selects region where most models agree

Thomas Meyer 27 LLWI 18-24 Feb 2001

Page 28: CLEO Measurements of the CKM Elements · Thomas Meyer 3 LLWI 18-24 Feb 2001. Vub and Vcb at CLEO Semileptonic B Decay B X c,u l ... Mass (GeV/c 2) 0 5 10 15 20 25 s ...

Vub and Vcb at CLEO–R

ESE

RV

E–

Outlook

Another round at CLEO continues . . .

• |Vcb| from B → D∗`ν with CLEO II.V dataset

SVX improves slow π efficiency

• |Vub| from endpoint of lepton energy spectrum with full CLEO

dataset

• |Vub| from measurements of non-perturbative physics from

b → s γ combined with endpoint spectrum

• Inclusive b → u `ν analysis

I Use other kinematic variables to cut out charm

Hadronic mass, q2

I But retain larger fraction of phase space

Thomas Meyer 28 LLWI 18-24 Feb 2001