Chem. 412 – Phys. Chem. I. Spontaneous Processes Mixing of gases Heat flow from hot to cold (Most)...

26
Chem. 412 – Phys. Chem. I T e m p era tu re P h a se T ran sitio n s H e a t E n g in es Z e ro E n tro p y fo r P e rfe c t C ry sta ls D o w n to Z e ro K 3 rd L a w E ntro p ies 3 rd L a w o f T herm odynam ics E n tro p y o f th e U n ive rse C a rn o t C ycles H e a t P um ps S u p e rc o o le d C alcu latio n s R e ve rsib le vs . Irre ve rsib le V olum e P re s su re E n tro p y Changes 2 n d L a w o f T herm odynam ics E n tro p y/D iso rd er D isb u rs e m e n t o f E nergy E n tro p y - 2 n d & 3 rd L a w s o f T herm odynam ics

Transcript of Chem. 412 – Phys. Chem. I. Spontaneous Processes Mixing of gases Heat flow from hot to cold (Most)...

Chem. 412 – Phys. Chem. IChem. 412 – Phys. Chem. I

Tem perature

Phase T ransitions

Heat Engines

Zero Entropy for Perfect CrystalsDow n to Zero K3rd Law Entropies

3rd Law of Therm odynam ics

Entropy of the Universe

Carnot Cycles Heat Pum ps

Supercooled Calculations Reversible vs. Irreversible

Volum e Pressure

Entropy Changes

2nd Law of Therm odynam icsEntropy/Disorder

Disbursem ent of Energy

Entropy - 2nd & 3rd Law s of Therm odynam ics

Spontaneous ProcessesSpontaneous Processes

• Mixing of gases• Heat flow from hot to cold• (Most) macroscopic events are irreversible

Key Sign of Spontaneity: Look for direction of change that leads to a chaotic dispersal of total energy.

Key Sign of Spontaneity: Look for direction of change that leads to a chaotic dispersal of total energy.

The Spontaneous Expansion of a Gas

• Why does the gas expand?

Entropy and the Entropy and the Second Law of Second Law of

ThermodynamicsThermodynamics

Second Law of ThermodynamicsSecond Law of Thermodynamics

T

qdS rev

dPVdSTdH

dVPdSTdU

:(2)Equation Master

:(1)Equation Master

ΔS Variations in terms of V & T ChangesΔS Variations in terms of V & T Changes

V

dVnR

T

dTCS V

ΔS Variations in terms of P & T ChangesΔS Variations in terms of P & T Changes

P

dPnR

T

dTCS P

V

dVnR

T

dTCS V

dVPdSTdU :(1)Equation Master

dPVdSTdH :(2)Equation Master

P

dPnR

T

dTCS P

ΔS Variations @ Constant VolumeΔS Variations @ Constant Volume

T

dTCS V

ΔS Variations @ Constant TemperatureΔS Variations @ Constant Temperature

P

dPnR

V

dVnRS

V

dVnR

T

dTCS V

P

dPnR

T

dTCS P

ΔS Comparisons: V versus TΔS Comparisons: V versus T

Double T at constant VDouble T at constant VDouble V at constant TDouble V at constant T

T

dTCS V

V

dVnRS

ΔS Variations @ Constant PressureΔS Variations @ Constant Pressure

ephase/stat sameover T

dTCS P

(pt) ns transitiophaseat pt

ptpt T

HS

P

dPnR

T

dTCS P

T

qdS rev

ENTROPY OF THE UNIVERSEENTROPY OF THE UNIVERSE

Die Enegie der Welt ist Konstant;Die Enegie der Welt ist Konstant;

die entropie der Welt einendie entropie der Welt einen

Maximum ZuMaximum Zu

Entropy is the Arrow of TimeEntropy is the Arrow of Time

A Brief History of Time S. Hawking’s Grand Design: The Meaning of Life (19 min)

Spontaneous Mixing of GasesSpontaneous Mixing of Gases

• Driving force due to Entropy• Compare Interdiffusion of gases to playing

“Bridge” (Cards): Chance of getting 13 cards of same suit (after proper shuffles) is <<<<<<<< Chance of getting some mixture of cards.

• S = -k pi ln pi (via Statistical TD)

cardsforx

ob 521035.6

1.Pr

11

3rd Law of Thermodynamics3rd Law of Thermodynamics So = 0 for any physical or chemical change involving perfect crystals at absolute zero.

• 3rd Law Entropies:

• For Irreversible Processes:

)(lnTdCT

dTCS

PP

0 surro

syso

univo SSS

Supercool ExampleSupercool ExampleAt constant pressure of 1 atm, calculate ΔSsys , ΔSsurr and ΔSuniv upon the sudden freezing of 1 mole of H2O at -10.00°C. (sudden freezing of supercooled water)

Given: CP(ℓ) = 75.3 J K-1 mol-1

CP(s) = 36.9 J K-1 mol-1

ΔHf° = 5950. J mol-1 (s → ℓ)

Sketch a Hess’ Law diagram replacing the irreversible process with three reversible steps.

Calculate ΔSsys [ ΔS(H2O) ]

Calculate ΔSsurr [ Need to find ΔHsurr at 263.15 K ]

Calculate ΔSuniv

Supercool Example: ΔSsysSupercool Example: ΔSsys

Supercool Example: ΔSsurrSupercool Example: ΔSsurr

2 :where

)(2

1

2

1

TcTbaC

dTCHd

P

T

T P

T

T rxn

Temperature Dependence of CP and Hrxn: ΔHsurr & ΔSsurrTemperature Dependence of CP and Hrxn: ΔHsurr & ΔSsurr

2 :where

)(2

1

2

1

TcTbaC

dTCHd

P

T

T P

T

T rxn

Supercool Example: ΔSunivSupercool Example: ΔSuniv

Supercool Example: ΔSsysSupercool Example: ΔSsys

F12

Temperature Dependence of CP and Hrxn: ΔHsurr & ΔSsurrTemperature Dependence of CP and Hrxn: ΔHsurr & ΔSsurr

2 :where

)(2

1

2

1

TcTbaC

dTCHd

P

T

T P

T

T rxn

F12

Supercool Example: ΔSsurrSupercool Example: ΔSsurr

F12

Heat PumpsHeat Pumps

T1

T2 High T

q1

-q2

workw

1q

w

1q

w

Low T

Net Results of a Carnot CycleNet Results of a Carnot Cycle

0

ln

ln

ln)(

1

2

11

1

2

22

1

2

12

S

V

VRTq

V

VRTq

V

VTTRw

2

12

T

TT

EngineHeat

2

12

T

TT

EngineHeat

1

12

T

TT

PumpHeat

1

12

T

TT

PumpHeat

Perpetual Motion Machine of the Second KindPerpetual Motion Machine of the Second Kind

Hot Reservoir T2

Cold Reservoir T1

q2

-q1

-w

-q2’

q1’

Heat Pump Engine

Web-link machines

Ng-Poli-Machine

Perpetual Motion Kilty

cartoon

Tem perature

Phase T ransitions

Heat Engines

Zero Entropy for Perfect CrystalsDow n to Zero K3rd Law Entropies

3rd Law of Therm odynam ics

Entropy of the Universe

Carnot Cycles Heat Pum ps

Supercooled Calculations Reversible vs. Irreversible

Volum e Pressure

Entropy Changes

2nd Law of Therm odynam icsEntropy/Disorder

Disbursem ent of Energy

Entropy - 2nd & 3rd Law s of Therm odynam ics

T

qdS rev

dPVdSTdH

dVPdSTdU

:(2) ME

:(1) ME V

dVnR

T

dTC

P

dPnR

T

dTCS VP

pt

ptpt T

HS

0 surr

osyso

univo SSS