Ch. 17: Spontaneity, Entropy, and Free...
Embed Size (px)
Transcript of Ch. 17: Spontaneity, Entropy, and Free...

Ch.17:Spontaneity,Entropy,andFreeEnergy

Recall

Equations
9

Spontaneous Processes • Spontaneity is determined by ΔH (enthalpy)
and ΔS (entropy)

The First Law of Thermodynamics • Law of conservation of energy
– The 1st Law of Thermodynamics: – Application of the law of conservation of
energy to heat and thermodynamic processes.
– Energy cannot be created or destroyed, but it can be changed (the energy of the universe is constant)

The Second Law of Thermodynamics • Second Law of Thermodynamics =
– The entropy of the universe always increases for a spontaneous process
– Recall: The First Law of Thermodynamics. Energy is conserved, but entropy is not

The Second Law of Thermodynamics • Changes in Entropy of the Universe • ΔSunivispositive
– Entropyoftheuniverseincreases– Processisspontaneousinthedirectionwritten
• ΔSunivisnegative– Processisspontaneousintheoppositedirection
• ΔSuniviszero– Processhasnotendencytooccur– Systemisatequilibrium

The Second Law of Thermodynamics • ΔS is usually positive (ΔS > 0) when:
1. Solid à Liquid à Gas 2. The total number of gas molecules
increases (look at your products vs. reactants)
3. A larger molecule is broken into 2 or more smaller molecules

GibbsFreeEnergy

Gibbs Free Energy • ΔG = Gibbs Free Energy
– “Available” energy à Energy that we can actually use to do work

Gibbs Free Energy • ΔG = Gibbs Free Energy
– This is contrast to enthalpy (H), which represents the total energy of the system

Gibbs Free Energy • ΔG = Gibbs Free Energy
– The energy that is actually available has to factor in the entropy of the system

Gibbs Free Energy • ΔG = ΔH – TΔS • ΔG = Δ Gibbs free energy • ΔH = Δ Enthalpy • T = Temperature in K • ΔS = Δ Entropy

ΔG = ΔH – TΔS • Relationship between ΔG and Spontaneity:
– ΔG < 0 , – Spontaneous process in the forward
direction; releases energy

ΔG = ΔH – TΔS • Relationship between ΔG and Spontaneity:
– ΔG > 0 , – Nonspontaneous process in the forward
direction

ΔG = ΔH – TΔS • Relationship between ΔG and Spontaneity:
– ΔG = 0 , – System is at equilibrium; no net change
occurs

ΔG = ΔH – TΔS
ΔH ΔS ΔG ReactionOutcome
-
+
Rxnisspontaneousat_________________________________
+
-
Rxnis__________________________________
-
-
Rxnisspontaneousat_________________________________
+
+
Rxnisspontaneousat_________________________________


Pair-Share-Respond1. Whatdoesthe2ndlawofthermodynamicstellus?
2. WhatarethreewaysthatΔSwillbecomepositive?
3. DefineGibbsFreeEnergy4. WhatistheequationforGibbsFreeEnergy?
5. UnderwhatΔHandΔSconditionswillΔGalwaysbepositive?

MoreonFreeEnergy

RelationshipbetweenFreeEnergy(G)andSpontaneity
univΔΔ = at constant andGS T PT
−
• ProcessesthatoccuratconstantTandParespontaneousinthedirectioninwhichthefreeenergydecreases– NegativeΔGmeanspositiveΔSuniv

FreeEnergyandSpontaneity
• Atwhattemperaturesisthefollowingprocessspontaneousat1atm?
Br2(l)àBr2(g)ΔH°=31.0kJ/molandΔS°=93.0kJ/mol
• WhatisthenormalboilingpointofliquidBr2?• Hint:
– Thereactionhasapositive(favored)entropy,butapositive(notfavored)enthalpy
– Howshouldthesevaluescompareattheboilingpoint?

Solution
• Attemperaturesabove333K,TΔS°hasalargermagnitudethanΔH°,andΔG°isnegative– Above333K,thevaporizationprocessisspontaneous– Theoppositeprocessoccursspontaneouslybelowthistemperature
• At333K,liquidandgaseousBr2coexistinequilibrium

Solution• Summaryofobservations(thepressureis1atmineachcase)– T>333K
• ThetermΔS°controls,andtheincreaseinentropywhenliquidBr2isvaporizedisdominant
– T<333K• Theprocessisspontaneousinthedirectioninwhichitisexothermic,andthetermΔH°controls
– T=333K• Theopposingdrivingforcesarejustbalanced(ΔH°=0),andtheliquidandgaseousphasesofbrominecoexist
• Thisisthenormalboilingpoint

• Amixtureofhydrogenandchlorineremainsunreacteduntilitisexposedtoultravioletlightfromaburningmagnesiumstrip– Thenthefollowingreactionoccursveryrapidly:
ΔG=–45.54kJ H2(g)+Cl2(g)à2HCl(g) ΔH=–44.12kJ ΔS=–4.76J/K
– Selectthestatementthatbestexplainsthisbehavior a. Reactantsarethermodynamicallymorestablethanthe
productsb. Reactionhasasmallequilibriumconstantc. Ultravioletlightraisesthetemperatureofthesystemand
makesthereactionmorefavorabled. NegativevalueforΔSslowsdownthereactione. Reactionisspontaneous,butthereactantsarekinetically
stable

SampleQuestion• Forthevaporizationofaliquidatagivenpressure,
a. ΔGispositiveatalltemperaturesb. ΔGisnegativeatalltemperaturesc. ΔGispositiveatlowtemperatures,butnegativeat
hightemperaturesd. ΔGisnegativeatlowtemperatures,butpositiveat
hightemperatures

SampleQuestion• Inwhichcasemustareactionbespontaneousatalltemperatures?a. ΔHispositive,andΔSispositiveb. ΔHisnegative,andΔSisnegativec. ΔHispositive,andΔSisnegatived. ΔHisnegative,andΔSispositivee. ΔH=0andΔS=0

EntropyandAqueousSolutions

Entropy and Aqueous Solutions • What about solutions? • Solutions will have a greater entropy than
pure lquids as the particles in a solution are more separated and solvent molecules separate the solute particles
• So in order of increasing entropy: Solids < Liquids < Aqueous Solutions < Gases

FormationofSolutions• FollowingvaluesofΔSforKCl(s),LiF(s),andCaS(s)formingaqueoussolutionsillustratetheunusualnatureofwaterasasolvent
osolnSΔ

EntropyChangesinAqueousSolutions• Recall:Hydration
osolnSΔ

EntropyChangesinAqueousSolutions• Polarwatermoleculesareattractedtotheionstoformhydratedspecies– Assemblingofagroupofwatermoleculesaroundtheionsisanorder-producingphenomenonandwouldbeexpectedtomakeanegativecontributiontoΔS
– Hydrationeffectwillbegreaterwhenanionpossessesmorechargedensity
• Enthalpychangesandentropiceffectsmustbeconsideredtopredictsolubility
osolnSΔ

SampleQuestion• ForthedissociationreactionoftheacidHF,ΔSisnegative
– WhichstatementbestexplainswhyΔSisnegative?a. EachHFmoleculeproducestwoionswhenitdissociatesb. Ionsarehydratedc. Reactionisexpectedtobeexothermic,soΔSshouldbe
negatived. Reactionisexpectedtobeendothermic,soΔSshouldbe
negative
–aq aq a( ) ( ) )q(à àÜá àà +HF H + F

EntropyChanges• Thirdlawofthermodynamics
– Entropyofaperfectcrystalat0Kiszero• ThereisonlyonemicrostateavailableatzeroK• Anotherwaytolookatthislaw:
– Theentropyofaperfectcrystalapproacheszeroastheabsolutetemperatureapproacheszero
• Entropyofasubstanceincreaseswithtemperature
40

EntropyValues• Standardentropyvalues(S°)representincreaseinentropythatoccurswhenasubstanceisheatedfrom0Kto298Kat1atm– Morecomplexthemolecule,thehigherthestandardentropyvalue
41

EntropyChangeforaGivenChemicalReaction
• Entropyisastatefunctionofachemicalsystem• Entropychangescanbecalculatedasfollows:
reaction p products r reactantsΔ =S n S n S° ° − °∑ ∑

FreeEnergyandPressure• SystemunderconstantPandTproceedsspontaneouslyinthedirectionthatlowersitsfreeenergy– Freeenergyofareactionsystemchangesasthereactionproceeds
• Dependentonthepressureofagasorontheconcentrationofspeciesinsolution
• Equilibrium-Pointwherefreeenergyvalueisatitslowest
43

FreeEnergyandPressure• Foridealgases:
– Enthalpyisnotpressure-dependent– Entropydependsonpressureduetoitsdependenceonvolume
• Atagiventemperaturefor1moleofidealgas:– Slargevolume>Ssmallvolume
Or– Slowpressure>Shighpressure
44

Equations
45

TheMeaningofΔGforaChemicalReaction
• EvenwhenvalueofΔGprovidesinformationregardingwhetherthesystemisfavoredunderagivensetofconditions:– Systemmaynotproceedtopureproducts(ifΔGisnegative)
– Systemmaynotremainatpurereactants(ifΔGispositive)
• Asystemwillspontaneouslyseekequilibrium
46

TheMeaningofΔGforaChemicalReaction
• Systemcanachievethelowestpossiblefreeenergybygoingtoequilibrium,notbygoingtocompletion

EquilibriumPoint(continued2)• Quantitativerelationshipbetweenfreeenergyandthevalueoftheequilibriumconstantisgivenby:
( )Δ = 0 = Δ ° + RT lnG G K
( )Δ ° = RT ln−G K