Chapter 4 Fluid Flow through Packed Bed of Particles...Defining equivalent height of filter cake and...

4
U i C h a p t e r 4 F l u i d F l o w t h r o u g h P a c k e d B e d o f P a r t i c l e s 4 . 1 P r e s s u r e D r o p - F l o w R e l a t i o n s h i p ( 1 ) L a m i n a r F l o w F l u i d f l o w t h r o u g h a p a c k e d b e d : s i m u l a t e d b y f l u i d f l o w t h r o u g h a h y p o t h e t i c a l t u b e s (- Δ p ) H = 32 μ U D 2 (- Δ p ) H e = K 1 μ U i D 2 e H a g e n - P o i s e i l l e e q u a t i o n S u b s t i t u t i n g s u i t a b l e r e l a t i o n s (- Δ p ) H = 180 μ U x 2 (1- ε ) 2 ε 3 C a r m a n - K o z e n y e q u a t i o n ( 2 ) G e n e r a l E q u a t i o n f o r T u r b u l e n t a n d L a m i n a r F l o w E r g u n e q u a t i o n (- Δ p ) H = 150 μ U x 2 (1- ε ) 2 ε 3 + 1.75 ρ f U 2 x (1- ε ) ε 3 L a m i n a r T u r b u l e n t L a m i n a r f l o w f o r Re *= xU ρ f μ (1- ε ) < 10 T u r b u l e n t f l o w f o r Re *= xU ρ f μ (1- ε ) > 2000 o r f *= 150 Re * + 1.75 w h e r e f *≡ (- Δ p ) H x ρ f U 2 ε 3 (1- ε )

Transcript of Chapter 4 Fluid Flow through Packed Bed of Particles...Defining equivalent height of filter cake and...

Page 1: Chapter 4 Fluid Flow through Packed Bed of Particles...Defining equivalent height of filter cake and volume of filtrate rmHm=rcHeq and H eq= φV eq A where V eq: volume of filtrate

Ui

Chapter 4 Fluid Flow through Packed Bed of

Particles

4.1 Pressure Drop - Flow Relationship

(1) Laminar Flow

Fluid flow through a packed bed: simulated by fluid flow through a

hypothetical tubes

∴ (- Δ p )H

=32μU

D 2

⇒ (- Δ p )H e

=K 1μU i

D2e

Hagen-Poiseille equation

Substituting suitable relations

∴ (- Δ p )H

= 180μU

x2

( 1- ε ) 2

ε 3

Carman-Kozeny equation

(2) General Equation for Turbulent and Laminar Flow

Ergun equation

(- Δ p )H

= 150μU

x2

( 1- ε ) 2

ε 3 + 1.75ρfU

2

x( 1 - ε )ε 3

Laminar Turbulent

Laminar flow for Re *=xU ρ fμ ( 1 - ε )

< 10

Turbulent flow for Re *=xU ρ fμ ( 1- ε )

> 2000

or

f*=150Re*

+1.75

where f * ≡(- Δ p )H

xρfU

2

ε 3

( 1- ε )

Page 2: Chapter 4 Fluid Flow through Packed Bed of Particles...Defining equivalent height of filter cake and volume of filtrate rmHm=rcHeq and H eq= φV eq A where V eq: volume of filtrate

Filtrate

Filter cake

Slurry

Filter medium

Filtrate

Filter cake

Slurry

Filter medium

Batch Continuous

P r e s s u r e

Filtration

Filter Press

Shell-and-Leaf FiltersAutomatic Belt Filters

V a c u u m

FiltrationDiscontinuous Vacuum Filters

Rotary Drum Filters

Horizontal Belt FiltersCentrifugal

FiltrationBatch Types Continuous Types

Types of liquid filters

Friction factor

Figure 4.1

(3) Nonspherical Particles

x sv (surface-volume diameter) instead of x

Worked Example 4.1

4.2 Filtration

For filtration theory and practice, see

http://coel.ecgf.uakron.edu/~chem/fclty/chase/

FILTRATION%20FUNDAMENTALS_files/frame.htm

(1) Introduction

Filter media : Canvas cloth, woolen cloth, metal cloth, glass,

cloth, paper, synthetic fabrics

Filter aids : To avoid cake plugging

- Diatomaceous silica, perlite, purified woolen cellulose, other

inert porous solids

- By either adding slurry (increasing cake permeability)

or precoating the filter media surface

Page 3: Chapter 4 Fluid Flow through Packed Bed of Particles...Defining equivalent height of filter cake and volume of filtrate rmHm=rcHeq and H eq= φV eq A where V eq: volume of filtrate

(2) Incompressible Cake

For cake filter

From laminar part of Ergun equation

(- Δ p )H

=150μU ( 1 - ε ) 2

x 2ε 3

where L : cake thickness

x : surface-volume diameter of particle

* For compressible filter cake,

dpdL

= r cμU

where r c: a function of pressure difference

By defining cake resistance r c

r c=150 ( 1 - ε ) 2

x2ε 3

,

(- Δ p )H

= r cμU

where U=1AdVdt

V: volume of slurry fed to filter

Also defining φ(volume formed by passage of unit volume filtrate)

φ= HAV

,

dVdt

=A 2 (- Δ p )r cμφV

Including the resistance of filter medium,

since the resistances of the cake and the filter medium are in

series,

(- Δ p ) = (- Δ p m )+ (- Δp c )

1AdVdtr cμHc

Page 4: Chapter 4 Fluid Flow through Packed Bed of Particles...Defining equivalent height of filter cake and volume of filtrate rmHm=rcHeq and H eq= φV eq A where V eq: volume of filtrate

By analogy for the filter medium

(-Δ p m )=1AdVdtr mμHm

∴ (- Δ p )=1AdVdt

( r m μH m+ r cμH c)

Defining equivalent height of filter cake and volume of filtrate

r mH m= r c H eq and H eq=φV eqA

where V eq: volume of filtrate passing to create a cake of thickness

H eq

∴ 1AdVdt

=(- Δ p)A

r cμ(V+V eq )φ

Constant rate filtration

1AdVdt

=(-Δ p)A

r cμ(V+V eq )φ= constant

Constant pressure filtration

Integrating

tV

=r cφμ

A 2(- Δ p ) ( V2 +V eq)

Worked Example 4.2

(3) Washing the Cake

Figure 4.2