CHAPTER 14athena.ecs.csus.edu/.../Spring2006/EEE109/ch14_solutions.pdf14-443 CHAPTER 14 14.1 (a)...

44
14-443 CHAPTER 14 14.1 (a) Common-collector Amplifier (emitter-follower) R E Q 1 R 1 R 2 R 3 + - v o R I v i 14.1 (b) Not a useful circuit because the signal is injected into the drain of the transistor. R 3 + - M 1 R D v i R I v o R 1 14.1 (c) Common-emitter Amplifier 1 k R C + - R 3 100 k Q 1 R 1 R 2 R I v i v o 14.1 (d) Common-source Amplifier

Transcript of CHAPTER 14athena.ecs.csus.edu/.../Spring2006/EEE109/ch14_solutions.pdf14-443 CHAPTER 14 14.1 (a)...

  • 14-443

    CHAPTER 14

    14.1 (a) Common-collector Amplifier (emitter-follower)

    RE

    Q1

    R1 R2

    R3

    +

    -

    v o

    RI

    v i

    14.1 (b) Not a useful circuit because the signal is injected into the drain of the transistor.

    R3

    +

    -

    M1

    R D

    v i

    RI

    voR1

    14.1 (c) Common-emitter Amplifier

    1 k Ω

    R C+

    -

    R3

    100 k Ω

    Q1

    R1 R 2

    RI

    v i

    vo

    14.1 (d) Common-source Amplifier

  • 14-444

    +

    -

    R3

    1 k Ω

    RD

    470 k Ω

    M1

    R2R

    1v i

    RI

    vo

    14.1 (e) Common-gate Amplifier

    R1

    R3RD

    +

    -

    M1vi

    RI

    vo

    14.1 (f) Common-collector Amplifier (emitter-follower)

    R1

    Q1

    RER

    2 R 3

    +

    -

    vo

    RI

    v i

    14.1 (g) Common-source Amplifier

    RI

    vi R

    G

    R 3

    R D

    +

    -

    v o

    RS

    J1

    14.1 (h) Common-base Amplifier

  • 14-445

    RC

    R E

    Q1

    R3

    +

    -

    RI

    vi

    vo

  • 14-446

    14.1 (i) Not a useful circuit since the signal is being taken out of the base terminal.

    R E

    Q1

    RBR3

    +

    -

    RI

    vi

    vo

    14.1 (j) Common-source Amplifier

    1 k Ω

    RD

    +

    -

    R3

    470 k Ω

    M1

    R2

    R1

    RI

    vi

    vo

    14.1 (k) Common-gate Amplifier

    R3

    RD

    +

    -

    RI

    vi

    voRS

    M1

    14.1 (l) Not a useful circuit because the signal is injected into the drain of the transistor.

    R3+

    -

    vo

    M1

    R D

    v i

    RI

    RS

  • 14-447

    14.1 (m) Common-source Amplifier

    J 1

    RG

    R3

    R D

    +

    -vi

    RI

    vo

    14.1 (n) Common-emitter Amplifier

    RB

    Q1

    R3

    +

    -

    v i

    RIvo

    14.1 (o) Common-drain Amplifier (Source-follower)

    RG

    M

    R 3

    +

    -

    v i

    RI

    vo

    14.2

    vo

    v i

    RIRS

    RGRD

    CB

    CC2

    1k Ω

    RL

    100 k Ω-VSS

    VDD

    CC1

    +

    -

  • 14-448

    14.3

    RI

    v i

    RS

    CC1

    CC2

    RG

    RD

    CB

    VDD

    -V SS

    RL1kΩ

    100 k Ω

    vo

    +

    -

    14.4

    RI

    v i

    RS

    -VSS

    RG

    RD

    CB

    RL

    100 k Ω

    CC1

    CC2

    VDD

    1k Ω

    vo

    +

    -

    14.5

    +15 V

    220 kΩ

    15 kΩ

    -15 V

    150 kΩ

    22 kΩ

    +

    -

    vO

    v I

    RI

    3.3 k Ω

    RE

    RB

    RC

    RLCC1

    CC2

    CB

    Q1

  • 14-449

    14.6

    (a)

    +15 V

    220 k Ω

    15 kΩ

    -15 V150 kΩ22 k Ω

    +

    -

    vO

    v I

    RI

    3.3 k Ω

    RE

    RB

    RC

    RL

    CC1

    CC2

    CB

    Q1

    (b)

    +15 V

    220 kΩ

    -15 V150 kΩ22 kΩ

    +

    -

    vO

    v I

    RI

    3.3 k Ω

    RE

    RB

    RL

    CC1

    CC2

    Q1

    14.7

    (a)

    +15 V

    220 kΩ

    15 kΩ

    -15 V

    3.3 k Ω

    150 kΩ

    22 kΩ

    +

    -

    vO

    RE

    RB

    RC

    RL

    CC1

    CC2

    CB

    vI

    RI

    Q1

    (b)

    +15 V

    15 kΩ

    -15 V

    3.3 kΩ

    150 k Ω

    22 kΩ

    +

    -

    vO

    RE

    RC

    RL

    CC1

    CC2

    v I

    RI

    Q1

    14.8

    a( ) Neglecting Rout : Avt = −gmRL

    1+ gmRS= −

    0.005S( ) 2000Ω( )1+ 0.005S( ) 200Ω( )

    = −5.00

    Av = AvtRG

    RI + RG= -5

    1MΩ75kΩ+ 1MΩ

    = -4.65 | Rin = RG = 1MΩ

    Rout = ro 1+ gmRS( )=10kΩ 1+ 0.005S( ) 200Ω( )[ ]= 20.0 kΩ >> 2kΩ

    Ai = −RGgm

    1+ gmRS= −1MΩ

    0.005S1+ 0.005S( ) 200Ω( )

    = −2500

    b( ) Av = −gm RL ro( ) RGRI + RG

    = − 0.005S( ) 2kΩ 10kΩ( ) 1MΩ

    75kΩ + 1MΩ

    = −7.75

    Rin = RG = 1MΩ | Rout = ro = 10.0 kΩ | Ai = −RGgm = −1MΩ 0.005S( )= −5000

  • 14-450

    14.9

    a( ) gm = 0.02S | rπ =75.02

    = 3750Ω

    Rin = RB rπ + βo + 1( )RE[ ]=15kΩ 3750Ω + 76 200Ω( )[ ]= 8.37 kΩ

    Neglecting Rout : Av = AvtRin

    RI + Rin

    = −

    βoRLrπ + βo +1( )RE

    RinRI + Rin

    Av = −75 12kΩ( )

    3750Ω + 76 200Ω( )8.37kΩ

    500Ω+ 8.37 kΩ

    = −44.8

    Rout ≅ ro 1+βoRE

    Rth + rπ + RE

    = 100kΩ 1+

    75 200Ω( )15kΩ 500Ω( )+ 3750Ω+ 200Ω

    = 438 kΩ >> 12kΩ

    Ai = −βoRB

    RB + rπ + βo +1( )RE= −75

    15kΩ15kΩ + 3750Ω + 76 200Ω( )

    = −33.1

    a( ) gm = 0.02S | rπ =75.02

    = 3750Ω

    Rin = RB rπ + βo +1( )RE[ ]= 15kΩ 3750Ω+ 76 560Ω( )[ ]= 11.3 kΩ

    Neglecting Rout : Av = AvtRin

    RI + Rin

    = −

    βoRLrπ + βo +1( )RE

    RinRI + Rin

    Av = −75 12kΩ( )

    3750Ω + 76 560Ω( )11.3kΩ

    500Ω+ 11.3kΩ

    = −18.6

    Rout ≅ ro 1+βoRE

    Rth + rπ + RE

    = 100kΩ 1+

    75 560Ω( )15kΩ 500Ω( )+ 3750Ω + 560Ω

    = 976 kΩ >>12kΩ

    Ai = −βoRB

    RB + rπ + βo +1( )RE= −75

    15kΩ15kΩ + 3750Ω + 76 560Ω( )

    = −18.3

    14.10

    a( ) For large βo : Av ≅ −RLRE

    = −8.2kΩ 47kΩ330Ω + 680Ω

    = −6.91 | b( ) Place a bypass capacitor in

    parallel with the 330 Ω resistor. Then Av ≅ −RLRE

    = −8.2kΩ 47kΩ

    680Ω= −10.3 | c( ) Place a

    bypass capacitor in parallel with the 680 Ω resistor. Then Av ≅ −8.2kΩ 47kΩ

    330Ω= −21.2

    d( ) Place a bypass capacitor from the emitter to ground. e( ) Av ≅ −10 VCC + VEE( )= −240.

  • 14-451

    14.11 Rin = rπ + βo + 1( )RE = 500 kΩ

    Avt = −βoRL

    rπ + βo + 1( )RE= −

    75RL500kΩ

    = −10 → RL = 66.7 kΩ

    Assuming βo +1( )RE >> rπ , RE ≅500 kΩβo + 1

    =500 kΩ

    76= 6.58 kΩ

    Note : The nearest 5% values would be 68 kΩ and 6.8 kΩ.

    14.12

    Rin = rπ = 500 kΩ | rπ =βogm

    =βoVT

    IC | IC =

    βoVTrπ

    =75 0.025V( )

    500kΩ= 3.75 µA

    Av = −gmRLrπ

    Rth + rπ

    = −

    βoRLRth + rπ

    = −75RL

    100Ω + 500kΩ= −10 | RL = 66.7 kΩ

    Closest 5% value is RL = 68kΩ.

    14.13

    R thR5

    ro

    vd

    i x

    vgs

    gm vgs

    + -

    ix − gmvgs+gmvgs

    =

    go −go−go go + GS

    vdvs

    | vgs = −vs

    ix0

    =

    go − gm + go( )−go gm + go + GS

    vdvs

    ∆ = goGS | vd = gm + go + GS( )ix∆

    =gm + go + GS( )

    goGSix

    Rout =vdix

    = RS 1+gmgo

    +GSgo

    = RS 1+ µf +

    roRS

    Rout = ro + 1+ µ f( )RS ≅ ro + µ f RS = ro 1+ gmRS( )

    14.14

    ix + gm' ve

    −gm' ve

    =

    go −go−go go + GE + G1

    vxve

    |

    ix0

    =

    go − gm' + go( )

    −go gm' + go + GE + G1

    vxve

    ∆ = go GE +G1( ) | vx = gm' + go + GE + G1( )ix∆ =gm

    ' + go + GE +G1( )( )go GE +G1( )

    ix

    Rout =vxix

    = RE R1( )1+ gm'

    go+

    GE + G1go

    = RE R1( )1+ gm' ro + roRE R1( )

    Rout = RE R1( )+ ro + ro gmrπRth + rπRE Rth + rπ( )Rth + rπ + RE

    = RE R1( )+ ro 1+ βoRERth + rπ + RE

  • 14-452

    14.15 From the results in Table 14.1,

    AvtCE = −

    gmRL1+ gmRE

    = −RL

    1gm

    + RE= −

    RLre + RE

    for re =1gm

    AvtCS = −

    gmRL1+ gmRS

    = −RL

    1gm

    + RS= −

    RLre + RS

    for re =1gm

    14.16

    VEQ =1262kΩ

    20kΩ+ 62kΩ= 9.07V | REQ = 20kΩ 62kΩ = 15.1kΩ

    IB =12 − 0.7 − 9.07( )V

    15.1kΩ + 75 + 1( )3.9kΩ= 7.16µA | IC = 537 µA | VEC = 12− 3900IE − 8200IC = 5.47 V

    Active region is correct. | rπ =75 0.025V( )

    537µA= 3.49kΩ | VA not specified, choose ro = ∞

    Rin = 15.1kΩ 3.49kΩ = 2.83 kΩ | Rout = ro 8.2kΩ = 8.2 kΩ | gm = 40IC = 21.5 mS

    RL = ro 8.2kΩ 100kΩ = 8.2kΩ 100kΩ = 7.58kΩ

    Av = −gmRLRin

    RI + Rin

    = − 21.5mS( ) 7.58kΩ( ) 2.83kΩ

    1kΩ+ 2.83kΩ

    = −120

    Ai =RB

    RB + rπ−βo( )

    RoutRout + R3

    =15.1kΩ

    15.1kΩ + 3.49kΩ−75( ) 8.2kΩ

    8.2kΩ + 100kΩ= −4.62

    vbe = v iRin

    RI + Rin= v i

    2.83kΩ1kΩ + 2.83kΩ

    = 0.739v i | v i =5.00mV0.739

    = 6.76 mV

    Av ≅ −10VCC = −10 12( )= −120. | The voltage gain is identical to the rule - of - thumb estimate.

    14.17

    VEQ =18500kΩ

    1.4MΩ+ 500kΩ= 4.74V | REQ = 500kΩ 1.4MΩ = 368kΩ

    4.74 = VGS + 27000ID = 1+2IDS

    250x10−6+ 27000ID → ID =104µA

    VDS =18 − ID 75kΩ+ 27kΩ( )= 7.39V | Active region operation is correct.

    gm = 2 250x10−6( )104x10−6( )= 0.228mS | Assume λ = 0, ro = ∞.

    RL = ro 75kΩ 470kΩ ≅75kΩ 470kΩ = 64.7kΩ

    Rin = RG = R1 R2 = 368 kΩ | Rout = ro 75kΩ ≅ 75kΩ

  • 14-453

    Av = −gmRLRin

    RI + Rin= − 0.228mS( ) 64.7kΩ( ) 368kΩ

    1kΩ + 368kΩ

    = −14.7

    Ai = RG −gm( )RD

    RD + R3= 368kΩ −0.228mS( ) 75kΩ

    75kΩ + 470 kΩ= −11.5

    vgs = viRin

    RI + Rin= v i

    368 kΩ1kΩ + 368kΩ

    = 0.997v i | VGS −VTN =2 104µA( )

    250µA /V 2= 0.912V

    vgs ≤ 0.2 VGS −VTN( )→ vi ≤ 0.20.912V0.997

    = 0.183 V | Av ≅ −VDD

    VGS −VTN= −

    180.912

    = −19.7

    The rule - of - thumb estimate assumes VRL =VDD

    2. We have VRL =104µA 75kΩ( )= 7.80V = 0.433VDD

    The estimate also doesn' t account for the presence of R 3 .

    14.18

    VEQ =182.2MΩ

    2.2MΩ + 2.2MΩ= 9.00V | RG = REQ = 2.2MΩ 2.2MΩ = 1.10MΩ

    18 = 22000ID − VGS + 9 | 9 = 22000ID + 1+2ID

    400x10−6→ ID = 307µA

    VDS = − 18 − ID 22kΩ +18kΩ( )[ ]= −5.72V | Active region operation is correct.gm = 2 400x10

    −6( ) 307x10−6( )= 0.496mS | Assume λ = 0, ro = ∞RL = ro 18kΩ 470kΩ ≅18kΩ 470kΩ = 17.3kΩ | Rin =1.10 MΩ | Rout = ro 18kΩ = 18kΩ

    Av = −gmRLRin

    RI + Rin

    = − 0.496mS( )17.3kΩ( ) 1.1MΩ

    1kΩ + 1.1MΩ= −8.57

    Ai = −gmRinRD

    RD + R3= −0.496mS 1.1MΩ( ) 18kΩ

    18kΩ+ 470kΩ= −18.3

    vgs = v iRin

    RI + Rin= v i

    1.1MΩ1kΩ +1.1MΩ

    = 0.999v i | VGS −VTN =2 307µA( )400µA /V 2

    =1.24V

    vgs ≤ 0.2 VGS − VTN( ) | v i ≤ 0.21.24V0.999

    = 0.248 V

    14.19

    VGS = − 11kΩ( )ID = − 11kΩ( ) 20mA( ) 1−VGS−4

    2

    → VGS = −3.50V , ID = −VGS

    11kΩ= 318 µA

    VDS = 20− ID 11kΩ + 39kΩ( )= 4.10V | Active region operation is correct.

    gm =2−4

    20mA 318µA( ) = 1.26mS | Assume λ = 0, ro = ∞. | RL = 39kΩ 500kΩ = 36.2kΩ

    Rin = RG =1.00 MΩ | Rout = 39kΩ

  • 14-454

    Av = −gmRL

    1+ gmRS

    RinRI + Rin

    = −

    1.26mS 36.2kΩ( )1+ 1.26mS 11kΩ( )

    1MΩ500Ω+ 1MΩ

    = −3.07

    Ai = −RGgm

    1+ gmRS

    RDRD + R3

    = −106

    1.26mS1+1.26mS 11kΩ( )

    39kΩ39kΩ + 500kΩ

    = −6.14

    vgs =Rin

    RI + Rinv i =1.00v i | VGS −VP = −3.5− −4( ) = 0.500V

    vgs ≤ 0.2 VGS − VP( ) 1+gmRS( ) | v i ≤ 0.2 0.5( )1+ 1.26mS 11kΩ( )[ ]=1.49 V

    14.20 VGS = 0 → ID = IDSS = 5.00mA | VDS = 16 −1800ID = 7.00V | Active region operation is correct.

    gm =2

    −55mA 5mA( ) = 2.00mS | Assume λ = 0, ro = ∞.

    Av = -gmRLRG

    RI + RG

    = − 2.00mS( ) 1.8kΩ 36kΩ( ) 10MΩ

    10MΩ +5kΩ

    = −3.43

    Rin = 10.0 MΩ | Rout = RD ro =1.80 kΩ

    Ai = −gmRGRD

    RD + R3

    = −2.00mS 10MΩ( ) 1.8kΩ

    1.8kΩ+ 36kΩ

    = −952

    vgs = v i10MΩ

    10MΩ +5kΩ

    ≤ 0.2VGS − VP → v i ≤ 1 V

    14.21

    IB =10 − 0.7( )V

    20kΩ+ 80+ 1( )9.1kΩ=12.3µA | IC = 983 µA | VCE = 20− 9100IE =11.0 V

    Active region is correct. | rπ =80 0.025V( )

    983µA= 2.04kΩ | ro =

    100 + 11.0( )V983µA

    = 113kΩ

    RL = ro 1MΩ =113kΩ 1MΩ = 102kΩ | Rin = RB rπ = 20kΩ 2.04kΩ = 1.85 kΩ | Rout = ro =113 kΩ

    Av = -gmRLRin

    RI + Rin

    = −40 983µA( )102kΩ( ) 1.85kΩ

    250Ω + 1.85kΩ= −3530

    Ai = −βoRB

    RB + rπ

    roro + R3

    = −80

    20kΩ20kΩ + 2.04kΩ

    113kΩ113kΩ +1MΩ

    = −7.37

    vbe = v iRin

    RI + Rin

    = v i

    20kΩ250Ω + 20kΩ

    = 0.988v i | v i ≤5.00mV0.988

    = 5.06 mV

    14.22 From Table 14.3,

    AvtCC ≅ Avt

    CD =gmRL

    1+ gmRL=

    RL1

    gm+ RL

    =RL

    re + RL for re =

    1gm

  • 14-455

    14.23

    rπ =80

    0.4S= 200Ω | Assume VA = ∞, ro = ∞.

    Rin = RB rπ + βo +1( )RL[ ]= 47kΩ 200Ω + 811kΩ( )[ ]= 29.8 kΩ

    Rout =Rth + rπβo + 1

    =47kΩ 10kΩ( )+ 200Ω

    81=104 Ω

    Av = +βo + 1( )RL

    rπ + βo + 1( )RLRin

    RI + Rin

    =

    811kΩ( )200Ω + 81 1kΩ( )

    29.8kΩ10kΩ + 29.8kΩ

    = 0.747

    Ai = + βo + 1( )RB

    RB + rπ + βo + 1( )RL

    roro + RL

    = 81

    47kΩ47kΩ + 200Ω + 811kΩ( )

    = 29.7

    14.24

    Assume λ = 0, ro = ∞. | Rin = RG = 2 MΩ | Rout =1gm

    = 100 Ω

    Av = +gmRL

    1+ gmRL

    RinRI + Rin

    =

    0.01 1kΩ( )1+ 0.01 1kΩ( )

    2MΩ100kΩ+ 2MΩ

    = 0.866

    Ai = +gmRGro

    ro + RL

    = 0.01 2MΩ( )= 2x104

    14.25 Defining v1 as the source node:

    a( ) 2kΩ 100kΩ = 1.96kΩv i − v1( )106

    + 3.54 x10−3 v i − v1( )=v1

    19603.541x10−3v i = 4.051x10

    −3v1v1 = 0.874v i | Av = 0.874

    Rin =v iii

    =v i

    10−6 v i − v1( )= 7.94 MΩ

    Driving the output with current source ix :

    Rout : ix =v1

    106+

    v12000

    + 3.54 x10−3v1

    Rout =v1ix

    = 247 Ω | b( ) Rin = ∞

    g mvgs

    2 k Ω 100 k Ω

    vgs

    +

    -+

    -

    1 M Ω

    v1v i

    RG

  • 14-456

    14.26

    IB =5 − 0.7( )V

    1MΩ + 100 + 1( )430kΩ= 96.8nA | IC = 9.68µA | VCE =10 − 430000IE = 5.80V

    Active region is correct. | rπ =100 0.025V( )

    9.68µA= 258kΩ | ro =

    60 + 5.80( )V9.68µA

    = 6.80MΩ - neglected

    In the ac model, R1 appears in parallel with rπ . The circuit appears to be using a transistor with

    rπ' = 500kΩ rπ =170kΩ and βo

    ' = gmrπ' = 40 9.68µA( )170kΩ = 65.8

    RL = 500kΩ 430kΩ 500kΩ = 158kΩ | Rin = rπ' + βo

    ' +1( )RL = 170kΩ + 66.8 158kΩ( )= 10.7 MΩ

    Av =βo

    ' + 1( )RLrπ

    ' + βo' + 1( )RL

    RinRI + Rin

    =

    66.8 158kΩ( )170kΩ + 66.8 158kΩ( )

    10.7MΩ500Ω+ 10.7MΩ

    = +0.984

    Rout = RE R2RI + rπ

    '

    βo' +1

    = 430kΩ 500kΩ500Ω +170kΩ

    66.8= 2.52 kΩ

    vbe = v irπ

    '

    RI + rπ' + βo

    ' + 1( )RL= v i

    170kΩ500Ω+ 170kΩ+ 66.8 158kΩ( )

    = 1.58x10−2v i

    v i ≤0.005V

    1.58x10−2= 0.315 V

    14.27

    VEQ =1851kΩ

    51kΩ + 100kΩ= 6.08V | REQ = 51kΩ 100kΩ = 33.8kΩ

    IB =6.08 − 0.7 + 18( )V

    33.8kΩ + 126( ) 4.7kΩ( )= 37.3µA | IC = 4.67 mA | VCE = 36 − 2000IC − 4700IE = 4.54 V

    Active region is correct. | rπ =125 0.025V( )

    4.67mA= 669Ω | ro =

    50 + 4.54( )V4.67mA

    = 11.7kΩ

    RB = R1 R2 = 51kΩ 100kΩ = 33.8kΩ | RL = R3 RE ro = 24kΩ 4.7kΩ 11.7kΩ = 2.94kΩ

    Rin = RB rπ + βo +1( )RL[ ]= 33.8kΩ 669Ω + 126( )2.94kΩ[ ]= 31.0 kΩ

    Av = +βo + 1( )RL

    rπ + βo + 1( )RLRin

    RI + Rin

    =

    126 2.94kΩ( )0.669kΩ + 126 2.94kΩ( )

    31.0kΩ500Ω + 31.0 kΩ

    = 0.982

    vbe = v iRin

    RI + Rin

    rπrπ + βo +1( )RL

    =

    31.0kΩ500Ω+ 31.0 kΩ

    0.669kΩ0.669kΩ+ 126 2.94kΩ( )

    = 1.77x103v i

    v i ≤0.005V

    1.77x10−3= 2.82 V | Rout = RE

    RB RI( )+ rπβo +1

    = 4.7kΩ33.8kΩ 500Ω( )+ 669Ω

    126= 9.22 Ω

  • 14-457

    14.28

    VGS = 5V | ID =4x10−4

    25−1( )2 = 3.2mA | VDS = 5 − −5( )=10V - Pinchoff region

    operation is correct. | gm = 2 4x10−4( ) 3.2mA( )1+ 0.02 10( )[ ]= 1.75mS

    ro =

    10.02

    + 10

    3.2VmA

    =18.8kΩ − Cannot neglect! | RL =18.8kΩ 100kΩ =15.8kΩ

    Rin = RG = 1 MΩ | Rout =1gm

    ro = 555 Ω

    Av = +Rin

    RI + Rin

    gmRL1+ gmRL

    = +

    1MΩ10kΩ + 1MΩ

    1.75mS 15.8kΩ( )1+1.75mS 15.8kΩ( )

    = 0.956

    vgs = v iRin

    RI + Rin

    11+ gmRL

    = v i

    106Ω104 Ω+ 106Ω

    11+1.75mS 15.8kΩ( )

    = 0.0346v i

    v i ≤0.2 5 −1( )0.0346

    = 23.2 V But, vDS must exceed vGS − VTN ≅ VGS −VTN = 4V for pinchoff.

    VDS =10 − vo =10 − 0.956v i ≥ 4 → v i ≤ 6.28 V − Limited by the Q - point voltages

    14.29 βo = gmrπ = 3.54 mS 1MΩ( )= 3540 | RL = 2kΩ 100kΩ = 1.96kΩ

    Av =βo + 1( )RL

    rπ + βo + 1( )RL=

    3540 + 1( ) 1.96kΩ( )1MΩ + 3540 +1( )1.96kΩ( )

    = 0.874

    Rin = rπ + βo + 1( )RL = 1MΩ + 3540 + 1( ) 1.96kΩ( )= 7.94 MΩ

    Rout = 2kΩrπ

    βo + 1( )= 2kΩ

    106

    3541( )= 247 Ω

    14.30 v i ≤ 0.005 1+ gmRL( ) | RL = RE R7 ≅ RE

    v i ≤ 0.005 1+ gmRL( )= 0.005 1+ gmRE( ) = 0.005 1+IC REVT

    v i ≤ 0.005 1+ αFIEREVT

    ≅ 0.005 1+

    IEREVT

    v i ≤ 0.005 1+VREVT

    = 0.005 1+

    VRE0.025

    = 0.005+ 0.2VRE

  • 14-458

    14.31

    a( ) vbe = v i − vo | 0.005 ≤ 5 − vo → Av =vov i

    ≥4.995

    5= 0.999

    b( ) Av =βo + 1( )RE

    rπ + βo + 1( )RE=

    1

    1 + rπβo +1( )RE

    =1

    1+ βoβo +1( )

    rπβoRE

    =1

    1+ αogmRE

    =1

    1+ VTIERE

    1

    1+ VTIERE

    ≥ 0.999 →VT

    IERE≤ 0.001 → IE RE ≥

    0.025V0.001

    = 25.0 V

    14.32

    vbe = v i − vo = 1− Av( )v i | 0.005 ≤ 1− Av( )7.5 → Av =vov i

    ≥7.5 − 0.005

    7.5= 0.999333

    From Prob. 14.30, Av =1

    1+VT

    IERL

    | RL = RE 500Ω =500RE

    500+ RE | Av =

    1

    1+VT

    IERE

    500+ RE500

    1

    1+VT

    IERE

    500+ RE500

    ≥ 0.999333→VT

    IERE

    500+ RE500

    ≤ 6.67x10−4

    500IE RE500 + RE

    ≥0.025V

    6.67x10−4= 37.5V | VCC ≥ IERE +0.7 +7.5

    Some design possibilities are listed in the table below.

    RE IE VCC VCC IE

    100 Ω 450 mA 53 V 24 W

    250 Ω 225 mA 64 V 16 W

    360 Ω 179mA 73V 13 W

    500 Ω 150 mA 83 V 12 W

    750 Ω 125 mA 102 V 13 W

    1000 Ω 113mA 120 V 14 W

    2000 Ω 93.8 mA 196 V 18 W

    Using a result near the minimum-power case in the table: RE = 510 Ω? ?? E?= 149 mA and VCC = 85 V.

    Assuming βF = 50 : IB ≅149mA

    51= 2.92 mA | Set IR1 = 5IB = 14.6mA ≅ 15mA

    R1 =VE + VBE

    IR1=

    149mA 510Ω( )+ 0.715mA

    = 5.07kΩ → 5.1 kΩ | IR2 = IR1 + IB ≅18mA

    R2 =85 −VBE − VBE

    IR2=

    8.3V18mA

    = 462Ω → 470 Ω

    It is very difficult to achieve the required level of linearity!

  • 14-459

    14.33

    a( ) Rin = R41gm

    = 3kΩ1

    0.5mS=1.20 kΩ | Rout = ∞ (assume λ = 0)

    Av =gmRL

    1+ gm RI R4( )R4

    RI + R4

    =

    0.5mS 100kΩ( )1+ 0.5mS 50Ω 3kΩ( )

    3kΩ50Ω + 3kΩ

    = 48.0

    Ai = 1R4

    R4 +1gm

    =3kΩ

    3kΩ+ 2kΩ= 0.600

    b( ) Av =0.5mS 100kΩ( )

    1+ 0.5mS 5kΩ 3kΩ( )3kΩ

    5kΩ + 3kΩ

    = 9.68 | Rin = 5kΩ

    10.5mS

    = 1.43 kΩ

    Rout = ∞ | Ai =5kΩ

    5kΩ + 2kΩ= 0.714

    14.34

    a( ) rπ =100 0.025V( )

    12.5µA= 200kΩ | gm = 40 12.5µA( )= 0.5mS

    Rin = R4rπ

    βo + 1= 100kΩ

    200kΩ101

    = 1.94 kΩ

    Av =gmRL

    1+ gm RI R4( )R4

    RI + R4

    =

    0.5mS 100kΩ( )1+ 0.5mS 50Ω 100kΩ( )

    100kΩ50Ω +100kΩ

    = 48.7

    Rout = ro 1+gm RI R4( )[ ]= 60V12.5µA 1+ 0.5mS 50Ω( )[ ]= 4.92 MΩ

    Ai = αoR4

    RI + R4

    = 0.990

    100kΩ50Ω +100kΩ

    = 0.990

    b( ) Av =0.5mS 100kΩ( )

    1+ 0.5mS 2.2kΩ 100kΩ( )100kΩ

    2.2kΩ +100kΩ

    = 23.6 | Rin = 1.94kΩ - no change

    Rout = ro 1+gm RI R4( )[ ]= 60V12.5µA 1+ 0.5mS 2.2Ω( )[ ]=10.1 MΩ

    14.35 The voltage gain is approximately 0. The signal is injected into the collector and taken out of the emitter. This is not a useful amplifier circuit.

    14.36 For R4 >> RI in Table 14.5,

    AvtCB = Avt

    CG = +gmRL

    1+ gmRth= +

    RL1

    gm+ Rth

    = +RL

    re + Rth for re =

    1gm

  • 14-460

    14.37

    ID =2x10−4( )

    2VGS + 1( )

    2 | 15 + VGS

    68kΩ= 10−4 VGS + 1( )

    2 → VGS = −2.363V

    ID =15 + VGS

    68kΩ = 186µA | VDS = − 30 − 68kΩ+ 43kΩ( )ID[ ]= −9.35V |

    Pinchoff region is correct. | gm =2 186µA( )2.36 −1

    = 0.274mS | Rin = 68kΩ1

    gm= 3.46kΩ

    Rout = RD = 43kΩ | RL = 43kΩ 200kΩ = 35.4kΩ

    Av =Rin

    RI + RingmRL =

    3.46kΩ0.250kΩ + 3.46kΩ

    0.274mS( ) 35.4kΩ( )= 9.05

    Ai = AvRI + Rin

    R3= 9.05

    3.71kΩ200kΩ

    = 0.168 | vgs = v i

    3.46kΩ0.250kΩ+ 3.46kΩ

    ≤ 0.2 VSG −1( )

    v i3.46kΩ

    0.250kΩ + 3.46kΩ≤ 0.2 2.36 −1( )→ v i ≤ 0.292 V

    14.38

    VGS = −12+ 33kΩ( )ID | VGS = −12 +3.3x104( )2x10−4( )

    2VGS + 1( )

    2

    VGS = −2.68V & ID =2x10−4( )

    2VGS + 1( )

    2 = 282µA

    VDS = − 24 − ID 33kΩ + 24kΩ( )[ ]= −7.93 V - Active region operation is correct.gm = 2 2x10

    −4( ) 2.82x10−4( )= 3.36x10−4 S | R I RS = 0.5kΩ 33kΩ = 493ΩAssume λ = 0, ro = ∞ | RL = RD R3 = 24kΩ 100kΩ = 19.4kΩ

    Av =gmRL

    1+ gm RI RS( )RS

    RI + RS

    =

    0.336mS 19.4kΩ( )1+ 0.336mS 493Ω( )

    33kΩ500Ω+ 33kΩ

    = 5.51

    Ai = 1RS

    RS +1gm

    RDRD + R3

    =

    33kΩ33kΩ + 2.98kΩ

    24kΩ24kΩ+ 100kΩ

    = 0.178

    Rin = RS1gm

    = 2.73 kΩ | Rout = RD = 24kΩ

    vgs = viRIN

    RI + RIN≤ 0.2VGS +1 | v i

    2.73kΩ0.5kΩ + 2.73kΩ

    ≤ 0.2 1.68( )→ vs ≤ 0.398 V

  • 14-461

    14.39

    IB =9− 0.7( )V

    100kΩ + 50 +1( )82kΩ=1.94µA | IC = 96.9 µA

    VCE =18 − 82000IE − 39000IC = 6.12 V | Active region operation is correct.

    gm = 40IC = 3.88mS | rπ =βogm

    = 12.9kΩ | ro =50 + 6.12( )V

    96.9µA= 579kΩ - neglected

    RI RE = 0.5kΩ 82kΩ = 497Ω | RL = RC R3 = 39kΩ 100kΩ = 28.1kΩ

    Av =gmRL

    1+ gm RI RE( )RE

    RI + RE

    =

    3.88mS 28.1kΩ( )1+ 3.88mS 497Ω( )

    82kΩ500Ω+ 82kΩ

    = 37.0

    Rin = 82kΩrπ

    βo +1= 252Ω | Ai = Av

    RI + RinR3

    = 37.0500Ω+ 252Ω

    100kΩ= 0.278

    Rout = RC = 39.0 kΩ | veb = v iRin

    RI + Rin≤ 5.00mV | 0.335v i ≤ 5.00mV | v i ≤ 14.9 mV

    14.40

    IB =9− 0.7( )V

    1000kΩ + 50 +1( )820kΩ=194nA | IC = 9.69 µA

    VCE =18 − 820000IE − 390000IC = 6.12 V | Active region is correct.

    gm = 40IC = 0.388mS | rπ =βogm

    =129kΩ | ro =50+ 6.12( )V

    9.69µA= 5.79MΩ - neglected

    RI RE = 5kΩ 820kΩ = 4.97kΩ | RL = RC R3 = 390kΩ 1MΩ = 281kΩ

    Av =gmRL

    1+ gm RI RE( )RE

    RI + RE

    =

    0.388mS 281kΩ( )1+ 0.388mS 4.97kΩ( )

    820kΩ5kΩ+ 820kΩ

    = 37.0

    Rin = 820kΩrπ

    βo +1= 2.52 kΩ | Ai = Av

    RI + RinR3

    = 37.05kΩ + 2.52kΩ

    1MΩ= 0.278

    Rout = RC = 390 kΩ | veb = v iRin

    RI + Rin≤ 5.00mV | 0.335v i ≤ 5.00mV | v i ≤ 14.9 mV

    14.41

    VGS = −3900ID = −39005x10−4( )

    2VGS + 2( )

    2 | VGS = −0.975 VGS + 2( )2 → VGS = −0.9915V

    ID =5x10−4( )

    2VGS + 2( )

    2 = 254µA | VDS =15 − 23.9kΩID = 8.92V - Pinched off.

  • 14-462

    gm =2 254µA( )2 − 0.992

    = 0.504mS | Rin = 3.9kΩ1gm

    = 1.32kΩ | Rout = RD = 20kΩ

    RL = 20kΩ 51kΩ =14.4kΩ

    Av =gmRL

    1+ gm RI RS( )RS

    RI + RS

    =

    0.504mS 14.4kΩ( )1+ 0.504mS 0.796kΩ( )

    3.9kΩ1kΩ+ 3.9kΩ

    = 4.12

    Ai = AvRI + Rin

    R3= 4.121kΩ+ 1.32kΩ

    51kΩ= 0.187

    vgs = v i1.32kΩ

    1kΩ + 1.32kΩ≤ 0.2 VGS + 2( ) | v i

    1.32kΩ1kΩ +1.32kΩ

    ≤ 0.2 −0.992 + 2( )→ v i ≤ 0.354 V

    14.42

    For R th >1gm

    , Av ≅RLRth

    For large R th, all of the Thevenin equivalent source

    current, v thRth

    , goes into the transistor source terminal.

    14.43

    Rin =rπ + 1.5kΩ

    βo +1 | rπ =

    75 0.025V( )1mA

    = 1.88kΩ | Rin =1.88kΩ + 1.5kΩ

    76= 44.5 Ω

    14.44

    gm =2−2

    1mA 5mA( ) = 2.24mS | Rin =1gm

    = 447 Ω

    14.45

    gm = 2 1.25mA( ) 1mA( ) = 1.58mS | Rin =1gm

    = 633 Ω

    14.46

    a( ) Rout = ro 1+βoRE

    rπ + RE

    | IE =

    15V − 0.7V143kΩ

    = 100µA | For βF =100, IC = 99.0µA

    rπ =100 0.025V( )

    99.0µA= 25.3kΩ | ro ≅

    50V99.0µA

    = 505kΩ

    Rout = 505kΩ 1+100 143kΩ( )

    25.3kΩ + 143kΩ

    = 43.4 MΩ b( ) 0 V

  • 14-463

    c( ) IE =15V − 0.7V

    15kΩ= 953µA | For βF =100, IC = 944µA | rπ =

    100 0.025V( )944µA

    = 2.65kΩ

    ro ≅50V

    944µA= 53.0kΩ | Rout = 53.0kΩ 1+

    100 15kΩ( )15kΩ + 2.65kΩ

    = 4.56 MΩ | VCB ≥ 0 V

    14.47

    Rout = βo + 1( )ro = βo +1( )VA + VCE

    IC

    = 126

    50 +10.749.6µA

    = 154 MΩ

    14.48

    Rin = 0.5MΩ | Av =104620 = 200 | Fairly large Rin, large gain

    A common - emitter amplifier operating at a low current can achieve both alarge gain and input resistance. Av ≅ 20VCC → VCC = 10VAchieving this gain with an FET is much more difficult :

    Av ≅VDD

    VGS −V TN=

    VDD0.25V

    → VDD ≅ 50V which is unreasonably large.

    14.49

    Rin = 10MΩ | Av = 102620 = 20 | Large Rin, moderate gain

    These requirements are readily met by a common - source amplifier.

    For example, Av ≅VDD

    VGS −V TN=

    15V0.5V

    = 30.

    A common - emitter stage operating at a low collector current with

    an unbypassed emitter resistor RE ≅10MΩ

    100=100kΩ

    is a second possibility,

    but the circuit will require careful design.

    14.50 An inverting amplifier with a gain of 40 dB is most easily achieved with a common - emitterstage : Av ≅ 10VCC → VCC =10 V . The input resistance can be achieved by shunting the

    input with a 5 - Ω resistor. Setting rπ = 5 Ω would require IC ≅100 0.025V( )

    5Ω= 0.5A and would

    waste a large amount of power to achieve the required input resistance.

    14.51 0 - dB gain corresponds to a follower ( Av = 1).

    For an emitter - follower, R in ≅ βo + 1( )RL ≅101 20kΩ( )= 2.02 MΩ. So an BJTcannot meet the input resistance requirement. A source follower provides a gain of approximately 1 and can easily achieve the required input resistance.

    14.52

  • 14-464

    A non - inverting amplifier with a gain of 20 and an input resistance of 5 k Ω shouldbe readily achievable with either a common - base or common - gate amplifier with proper choice of operating point. The gain of 10 is easily achieved with either the

    FET or BJT design estimate : Av ≅VDD

    VGS − VTN or Av ≅ 10VCC . Rin ≅

    1gm

    = 5 kΩ is within

    easy reach of either device. The gain and input resistance can also be easily metwith either a common - emitter, or common - source stage with a resistor shunt at the input.

    14.53

    A gain of 0.97 and an input resistance of 400k Ω should be achievable with

    either a source - follower or emitter - follower. For the FET, Av ≅gmRL

    1+ gmRL= 0.97

    requires gmRL = 33.3 : 2IDRL

    VGS − VTN= 33.3 → IDRL = 8.3V for a design with VGS − VTN = 0.5V .

    The BJT can achieve the required gain with a much lower power supply and

    can still meet the Rin requirement : Rin ≅ βoRL ≅100 5kΩ( )= 500kΩ.

    Av ≅gmRL

    1+ gmRL= 0.97 | gmRL = 33.3→ IC RE = 33.3 0.025( )= 0.833 V .

    The requirements can be met with careful bias circuit design and specificationof a BJT with minimum current gain of at least 100.

    14.54

    Av = 106620 = 2,000. This value of voltage gain approaches the amplification factor

    of the BJTs : Av ≤ µ f = 40VA = 40 75( )= 3000. Such a large gainrequirement cannot be met with single - transistor BJT amplifiers using theresistive loaded amplifiers in this chapter (Remember the 10 - VCC limit). FETstypically have much lower values of µf and are at an even worse disadvantage.None of the single - transistor amplifier configurations can meet the gain requirements.

    14.55

    Rout =Rth + rπβo + 1

    | Assuming Rth ≅ RI and rπ = 0, Rout ≥RI

    βo +1=

    250151

    =1.66Ω

  • 14-465

    14.56 Rin = rπ + βo + 1( )RE ≅ rπ + βoRE = rπ 1+ gmRE( ) | rπ' = rπ 1+ gmRE( )

    gm' =

    icv i

    =βo

    rπ + βo +1( )RE≅

    βorπ + βoRE

    =βo

    rπ 1+ gmRE( )=

    gm1+ gmRE

    ro' =

    icvc v i =0

    = ro 1+βoRE

    rπ + RE

    ≅ ro 1+

    βoRErπ

    = ro 1+ gmRE( ) for rπ >> RE

    βo' = gm

    ' rπ' =

    gm1+ gmRE

    rπ 1+ gmRE( )= βo | µ f' = gm' ro' =

    gm1+ gmRE

    ro 1+ gmRE( )= µ f

    14.57 *Problem 14.57 - Common-Emitter Amplifier 5mV VCC 6 0 DC 9 VEE 4 0 DC -9 VS 1 0 SIN(0 0.005 1K) C1 1 2 1U RB 2 0 10K RC 6 5 3.6K RE 3 4 2K C2 3 0 50U C3 5 7 1U R3 7 0 10K Q1 5 2 3 NBJT .OP .TRAN 1U 5M .FOUR 1KHZ V(7) .MODEL NBJT NPN IS=1E-16 BF=100 VA=70 .PROBE V(7) .END *Problem 14.57 - Common-Emitter Amplifier 10mV VCC 6 0 DC 9 VEE 4 0 DC -9 VS 1 0 SIN(0 0.01 1K) C1 1 2 1U RB 2 0 10K RC 6 5 3.6K RE 3 4 2K C2 3 0 50U C3 5 7 1U R3 7 0 10K Q1 5 2 3 NBJT .OP .TRAN 1U 5M .FOUR 1KHZ V(7) .MODEL NBJT NPN IS=1E-16 BF=100 VA=70 .PROBE V(7) .END *Problem 14.57 - Common-Emitter Amplifier 15mV VCC 6 0 DC 9 VEE 4 0 DC -9 VS 1 0 SIN(0 0.015 1K) C1 1 2 1U RB 2 0 10K

  • 14-466

    RC 6 5 3.6K RE 3 4 2K C2 3 0 50U C3 5 7 1U R3 7 0 10K Q1 5 2 3 NBJT .OP .TRAN 1U 5M .FOUR 1KHZ V(7) .MODEL NBJT NPN IS=1E-16 BF=100 VA=70 .PROBE V(7) .END

    Results: 1 kHz 2 kHz 3 kHz THD

    5 mV 5.8 mV 0.335 mV (5.7%) 0.043 mV (0.74% 5.9% 10 mV 12.4 mV 1.54 mV (12.5%) 0.258 mV (2.1%) 12.8% 15 mV 20.6 mV 4.32 mV (21%) 1.18 mV (5.4%) 22%

    14.58

    *Problem 14.58 - Output Resistance VCC 2 0 DC 10 IB1 0 1 DC 10U Q1 2 1 0 NBJT IB2 0 3 DC 10U RE 4 0 10K Q2 2 3 4 NBJT .OP .DC VCC 10 20 .025 .MODEL NBJT NPN IS=1E-16 BF=60 VA=20 .PRINT DC IC(Q1) IC(Q2) .PROBE IC(Q1) IC(Q2) .END

    Results: A small value of Early voltage has been used deliberately to accentuate the results. Note that the transistors have significantly different values of βF because of the collector-emitter voltage differences and low value of VA.

    NAME Q1 Q2 MODEL NBJT NBJT IB 1.00E-05 1.00E-05 IC 8.77E-04 6.72E-04 VBE 7.61E-01 7.61E-01 VBC -9.24E+00 -2.41E+00 VCE 1.00E+01 3.18E+00 BETADC 8.77E+01 6.72E+01 GM 3.39E-02 2.60E-02 RPI 2.59E+03 2.59E+03 RO 3.33E+04 3.33E+04

  • 14-467

    From SPICE : Rout1 =20−10( )

    1.17 − 0.877( )VmA

    = 34.1 kΩ | Rout2 =20−10( )

    903− 673( )VµA

    = 43.5 kΩ

    For circuit 1 : Rout1 = ro1 = 33.3 kΩ

    For circuit 2 : Rout2 = ro 2 1+βoRE

    Rth + rπ + RE

    + Rth + rπ( ) RE (See Eq. 14.28)

    But Rth = ∞ → Rout2 = ro2 + RE = 33.3kΩ + 10kΩ = 43.3 kΩ

    14.59

    v th = GmRth = −gm

    1 + gmRSro 1+ gmRS( )[ ]v i = −µ f v i = − 0.5mS( ) 250kΩ( )v i = −125v i

    Rth = ro 1+ gmRS( ) = ro + µ f RS = 250kΩ + 125 18kΩ( )= 2.50 MΩ

    14.60

    v th = v irπ

    RI + rπ1 + gmro( )=

    rπRI + rπ

    1+ µ f( )v i = 50kΩ270Ω + 50kΩ 1 + 2mS 250kΩ( )[ ]v i = 498v i

    Rth ≅ ro 1+βoRI

    RI + rπ

    = 250kΩ 1+

    100 270Ω( )270Ω + 50kΩ

    = 384 kΩ

    14.61

    v th = v iβo + 1( )ro

    RI + rπ + βo +1( )ro= v i

    1RI

    βo +1( )ro+

    rπβo + 1( )ro

    + 1= v i

    1gmRI

    βo +1( )µ f+

    βoβo +1( )µ f

    +1≅ v i

    Rth ≅RI + rπβo +1

    ro ≅RI + rπβo + 1

    14.62

    a( ) y21 =i2v1 v2 =0

    | i2 = −gmv1 | y21 = −gm | y12 =i1v2 v1 = 0

    | i1 = 0 | y12 = 0 | y12y21

    = 0

    b( ) y21 = −400 µS | y12 = 0 | y21 >> y12

    14.63

    a( ) z21 =v2i1 i2 = 0

    | v2 = i1RB( )βo + 1( )RE

    RB + rπ + βo + 1( )RE | z21 =

    βo + 1( )RERBRB + rπ + βo + 1( )RE

    z12 =v1i2 i1 =0

    =RE

    RE +RB + rπβo + 1( )

    RBβo +1( )

    =RE RB

    RB + rπ + βo + 1( )RE | z21 = βo + 1( )z12

    b( ) z21 =101( ) 2.4kΩ( )150kΩ( )

    2.4kΩ+ 10kΩ+ 101( )150kΩ= 2.40 kΩ | z12 =

    z21101

    = 23.7 Ω

    14.64

  • 14-468

    a( ) h21 =i2i1 v2= 0

    =−αoRE

    RE +rπ

    βo + 1

    =−βoRE

    rπ + βo + 1( )RE≅ −1

    h12 =v1v2 i1= 0

    =go

    gm + gπ + go + gE=

    1

    µ f +µ fβo

    + 1+µ f

    gmRE

    ≅1

    µ f | h21 = −µ f h12

    b( ) h21 =−100 3.9kΩ( )

    33.3kΩ + 101( )3.9kΩ= −0.922 | h12 =

    1

    2400 +2400100

    + 1+240011.7

    = 3.8x10−4

    14.65

    a( ) g21 =v2v1 i2= 0

    = +gmRD | g12 =i1i2 v1 = 0

    = −RD

    RD + ro | g21 = −gm RD + ro( )g12 ≅ −µ f g12

    b( ) g21 = +0.5mS 100kΩ( )= 50 | g12 = −100kΩ

    100kΩ + 500kΩ= −0.167

    14.66

    a( ) y21 =i 2v1 v 2= 0

    | i 2 =βo

    rπ + βo + 1( )REv1 | y21 =

    βorπ + βo + 1( )RE

    y12 =i1v2 v 1= 0

    | i1 = −i2RE

    RE + rπ= − v2

    Rout

    RERE + rπ

    ≅ − v2

    ro 1+βoRE

    RE + rπ

    RERE + rπ

    y12 ≅ −1

    βo +1( )ro for βo +1( )RE >> rπ

    y12y21

    = −1

    βo + 1( )rorπ + βo + 1( )RE

    βo≅

    REβoro

    for βo +1( )RE >> rπ | REβoro

    =gmREβoµ f

  • 14-469

    At the output node vo : gmvx = go + GL( )vo − govx | vo =gm + gogo + GL

    vx

    ix = gmvx + go vx − vo( ) | ixvx

    = gm + go 1−gm + gogo + GL

    = gm + go

    GL − gmgo + GL

    ixvx

    = gm + goGL − gmgo + GL

    = GL

    gm + gogo + GL

    | Rin =vxix

    =1gm

    1+RLro

    1+1µf

    ≅1gm

    1+RLro

    14.69

    IC =1005 − 0.7

    104 +101 103( )= 3.87mA | gm = 40IC = 0.155S | rπ =

    100gm

    = 645Ω

    RL = 1kΩ 20kΩ = 952Ω | RE = 1kΩ 20kΩ = 952Ω

    Av1 = −βoRL

    rπ + βo + 1( )RE= −

    100 952Ω( )645Ω +101 952Ω( )

    = −0.984

    Av2 =βo + 1( )RE

    rπ + βo + 1( )RE=

    101 952Ω( )645Ω +101 952Ω( )

    = 0.993

    The small - signal requirement limits the output signal to :

    vbe = v i − vo2 = vi 1− 0.993( )= 0.007v i | v i ≤0.0050.007

    = 0.714V

    vo1 ≤ 0.984 0.714V( )= 0.703VWe also need to check VCB : VC = 5 − 3.87mA 1kΩ( )= 1.13V and VB = −104 IB = −0.387V .The total collector - base voltage of the transistor is therefore : VCB = 1.52V − 0.984v i − v i .We require VCB ≥ 0 for forward - active region operation. Therefore : v i ≤ 0.766 V .The small - signal limit is the most restrictive.

    14.70

    *Problem 14.70 - Common-Collector Amplifier 14.48(a) VCC 6 0 DC 18 VEE 7 0 DC -18 VI 1 0 AC 1 *For Output Resistance *VI 1 0 AC 0 *VO 8 0 AC 1 RI 1 2 500 C1 2 3 10UF R1 3 0 51K R2 6 3 100K RE 4 7 4.7K RC 6 5 2K C3 5 0 10UF C2 4 8 47UF R3 8 0 24K Q1 5 3 4 NBJT

  • 14-470

    .OP

    .AC LIN 1 10KHZ 10KHZ

    .MODEL NBJT NPN IS=1E-16 BF=125 VA=50

    .PRINT AC VM(8) VP(8) VM(3) VP(3) IM(VI) IP(VI) IM(C2) IP(C2)

    .END

    Results: Q-point: (4.67 mA, 4.57 V), Av = 0.982, Rin = 31.1 kΩ???Rout?= 9.12 Ω

    rπ =125 0.025V( )

    4.67mA= 669Ω | ro =

    50+ 4.57( )V4.67mA

    = 11.7kΩ

    RB = R1 R2 = 51kΩ 100kΩ = 33.8kΩ | RL = R3 RE ro = 24kΩ 4.7kΩ 11.7kΩ = 2.94kΩ

    Rin = RB rπ + βo + 1( )RL[ ]= 33.8kΩ 669Ω + 126( )2.94kΩ[ ]= 31.0 kΩ

    Av = +βo +1( )RL

    rπ + βo +1( )RLRin

    RI + Rin

    =

    126 2.94kΩ( )0.669kΩ +126 2.94kΩ( )

    31.0kΩ500Ω+ 31.0 kΩ

    = 0.982

    Rout = RERB RI( )+ rπ

    βo + 1= 4.7kΩ

    33.8kΩ 500Ω( )+ 669Ω126

    = 9.22 Ω

    14.71

    *Problem 14.71 - Common-Emitter Amplifier - 14.48(c) VCC 6 0 DC 12 VI 1 0 AC 1 *VI 1 0 AC 0 *VO 7 0 AC 1 RI 1 2 1K C1 2 3 2.2UF R1 6 3 20K R2 3 0 62K RE 6 4 3.9K C2 6 4 47UF RC 5 0 8.2K C3 5 7 10UF R3 7 0 100K Q1 5 3 4 PBJT .OP .AC LIN 1 5KHZ 5KHZ .MODEL PBJT PNP IS=1E-16 BF=75 VA=60 .PRINT AC VM(7) VP(7) VM(3) VP(3) IM(VI) IP(VI) IM(C3) IP(C3) .END

    Results: Q-point: (525 µA, 5.62V), Av = -110, Rin = 3.16kΩ? ?Rout?= 7.69 kΩ

    ro =60 + 5.62525x10−6

    = 125kΩ | rπ =75 0.025( )525x10−6

    = 3.57kΩ

    RL = ro 8.2kΩ 100kΩ =125kΩ 8.2kΩ 100kΩ = 7.15kΩ

    Rin = 15.1kΩ 3.57kΩ = 2.88 kΩ | Rout = ro 8.2kΩ = 7.70 kΩ | gm = 40IC = 21.0 mS

    Av = −gmRLRin

    RI + Rin

    = − 21.0mS( ) 7.15kΩ( ) 2.88kΩ

    1kΩ+ 2.88kΩ

    = −111

    14.72

  • 14-471

    *Problem 14.72 - Common-Source Amplifier - 14.48(d) VDD 4 0 DC 18 VI 1 0 AC 1 *For output resistance *VI 1 0 AC 0 *VO 7 0 AC 1 RI 1 2 1K C1 2 3 2.2U R1 3 0 500K R2 4 3 1.4MEG R4 6 0 27K C2 6 0 47U RD 4 5 75K C3 5 7 10U R3 7 0 470K M1 5 3 6 6 NMOSFET .OP .AC LIN 1 5KHZ 5KHZ .MODEL NMOSFET NMOS VTO=1 KP=250U LAMBDA=0.02 .PRINT AC VM(3) VP(3) VM(7) VP(7) IM(VI) IP(VI) IM(C3) IP(C3) .END

    Results: Q-point: (106µA, 7.14V), Av = -14.2, Rin = 369kΩ, Rout = 65.8 kΩ

    ro =50 + 7.14106x10−6

    = 539kΩ | gm = 2 250x10−6( )106x10−6( )1+ 0.02 7.14( )[ ]= 246µS

    RL = ro RD 470kΩ = 539kΩ 75kΩ 470kΩ = 57.7kΩ

    Rin = R1 R2 = 500kΩ 1.4MΩ = 368kΩ | Rout = ro 75kΩ = 65.8 kΩ

    Av = −gmRLRin

    RI + Rin

    = − 0.246mS( ) 57.7kΩ( ) 368kΩ

    1kΩ + 368kΩ

    = −14.2

    14.73 *Problem 14.73 - Common-Gate Amplifier - 14.48(e) VSS 5 0 DC 12 VDD 6 0 DC -12 VI 1 0 AC 1 *For Output Resistance *VI 1 0 AC 0 *VO 7 0 AC 1 RI 1 2 500 C1 2 3 10U R1 5 3 33K RD 6 4 24K C2 4 7 47U R3 7 0 100K M1 4 0 3 3 PFET .OP

  • 14-472

    .AC LIN 1 50KHZ 50KHZ

    .MODEL PFET PMOS KP=200U VTO=-1 LAMBDA=0.02

    .PRINT AC VM(7) VP(7) VM(3) VP(3) IM(VI) IP(VI) IM(C2) IP(C2)

    .END Results: Q-point: (286 µA, 7.72V), Av = +5.50, Rin = 2.73 kΩ, Rout = 21.8 kΩ

    gm = 2 2x10−4( ) 2.86x10−4( )1+ 0.02 7.72( )[ ]= 3.63x10−4 S | R I RS = 0.5kΩ 33kΩ = 493Ω

    ro =50+ 7.722.86x10−4

    = 202kΩ | RL = ro RD R3 = 202kΩ 24kΩ 100kΩ = 17.7kΩ | Rin = RS1gm

    = 2.54 kΩ

    Rout = ro RD = 21.4 kΩ | Av =gmRL

    1+ gm RI RS( )RS

    RI + RS

    =

    0.363mS 17.7kΩ( )1+ 0.363mS 0.493kΩ( )

    33kΩ500Ω+ 33kΩ

    = 5.37

    14.74

    IC =1005 − 0.7

    500kΩ+ 500kΩ + 101( )430kΩ= 9.68µA | VCE = 5 − IC 430kΩ( )− −5( )= 5.80V

    rπ =100

    40 9.68µA( )= 258kΩ | ro =

    60 +5.89.68x10−6

    = 6.80MΩ | RL = 500kΩ 430kΩ 500kΩ ro = 154kΩ

    Absorb R1 inro the transistor : rπ' = rπ R1 =170kΩ | βo

    ' = gmrπ' = 65.8

    Rin = rπ' + βo

    ' + 1( )RL =170kΩ + 66.8 154kΩ( )=10.5 MΩ

    Rout = 430kΩ 500kΩ roRI + rπ

    '

    βo' +1

    = 2.53 kΩ

    Av = +βo

    ' + 1( )RLRI + rπ

    ' + βo' +1( )RL

    =66.8 154 kΩ( )

    0.5kΩ+ 170kΩ+ 66.8 154kΩ( )= 0.984

    *Problem 14.74 - Common-Collector Amplifier - 14.1(f) VCC 7 0 DC 5 VEE 8 0 DC -5 VI 1 0 AC 1 *For Output Resistance *VI 1 0 AC 0 *VO 6 0 AC 1 RI 1 2 500 C1 2 3 10UF R1 3 5 500K R2 5 0 500K RE 4 8 430K C2 4 5 47UF C3 4 6 10UF R3 6 0 500K Q1 7 3 4 NBJT .OP

  • 14-473

    .AC LIN 1 10KHZ 10KHZ

    .MODEL NBJT NPN IS=1E-16 BF=100 VA=60

    .PRINT AC VM(6) VP(6) VM(3) VP(3) IM(VI) IP(VI) IM(C3) IP(C3)

    .END

    Results: Q-point: (9.81 µA, 5.74V), Av = 0.983, Rin = 11.0 MΩ???Rout?= 2.58 kΩ

    14.75 *Problem 14.75 - Common-Source Amplifier - 14.48(g) VDD 6 0 DC 20 VI 1 0 AC 1 *For output resistance *VI 1 0 AC 0 *VO 7 0 AC 1 RI 1 2 500 C1 2 3 2.2UF RG 3 0 1MEG R4 4 0 11K C2 5 7 47UF RD 6 5 39K R3 7 0 500K J1 5 3 4 NJFET .OP .AC LIN 1 4KHZ 4KHZ .MODEL NJFET NJF BETA=1.25M VTO=-4 LAMBDA=0.02 .PRINT AC VM(3) VP(3) VM(7) VP(7) IM(VI) IP(VI) IM(C2) IP(C2) .END

    Results: Q-point: (319 µA, 4.03V), Av = -3.02, Rin = 1.00 MΩ, Rout = 38.4 kΩ

    VGS = − 11kΩ( )ID = − 11kΩ( ) 20mA( ) 1−VGS−4

    2

    → VGS = −3.50V , ID = −VGS

    11kΩ= 318 µA

    VDS = 20− ID 11kΩ + 39kΩ( )= 4.10V | Active region operation is correct.

    gm =2−4

    20mA 318µA( ) = 1.26mS | Assume λ = 0, ro = ∞. | RL = 39kΩ 500kΩ = 36.2kΩ

    14.76

    *Problem 14.76 - Common-Base Amplifier - 14.48(h) VCC 7 0 DC -9 VEE 4 0 DC 9 VI 1 0 AC 1 *For output resistance *VI 1 0 AC 0 *VO 8 0 AC 1 RI 1 2 500 C2 2 3 47UF RB 5 0 100K RE 3 4 82K C1 5 0 4.7UF RC 7 6 39K C3 6 8 10UF

  • 14-474

    R3 8 0 100K Q1 6 5 3 PBJT .OP .AC LIN 1 12KHZ 12KHZ .MODEL PBJT PNP IS=1E-16 BF=50 VA=50 .PRINT AC VM(3) VP(3) VM(8) VP(8) IM(VI) IP(VI) IM(C3) IP(C3) .END

    Results: Q-point: (97.2 µA, 6.10V), Av = 35.5, Rin = 273 Ω??Rout?= 38.1 kΩ

    gm = 40IC = 3.89mS | rπ =βogm

    = 12.9kΩ | ro =50 + 6.10( )V

    97.2µA= 577kΩ

    Rth = RI RE = 0.5kΩ 82kΩ = 497Ω | RL = ro 1+ gmRth( ) RC R3 = 1.69MΩ 39kΩ 100kΩ = 27.6kΩ

    Av =gmRL

    1+ gm RI RE( )RE

    RI + RE

    =

    3.89mS 27.6kΩ( )1+ 3.89mS 497Ω( )

    82kΩ500Ω+ 82kΩ

    = 36.4

    Rin = 82kΩrπ

    βo +1= 252Ω | Rout = ro 1+ gmRth( ) RC = 38.1 kΩ

  • 14-475

    14.77 *Problem 14.77 - Common-Source Amplifier 14.48(j) VDD 6 0 DC 18 VI 1 0 AC 1 *For output resistance *VI 1 0 AC 0 *VO 7 0 AC 1 RI 1 2 1K C1 2 3 2.2UF R2 6 3 2.2MEG R1 3 0 2.2MEG RS 6 4 22K C2 6 4 47UF RD 5 0 18K C3 5 7 10UF R3 7 0 470K M1 5 3 4 4 PFET .OP .AC LIN 1 7.5KHZ 7.5KHZ .MODEL PFET PMOS KP=400U VTO=-1 LAMBDA=0.02 .PRINT AC VM(3) VP(3) VM(7) VP(7) IM(VI) IP(VI) IM(C3) IP(C3) .END

    Results: Q-point: (268µA, 8.60V), Av = -8.29, Rin = 1.10 MΩ??Rout?= 16.4 kΩ

    ro =50 + 8.60268x10−6

    = 219kΩ | gm = 2 400x10−6( )268x10−6( )1+ 0.02 8.60( )[ ]= 501µS

    RL = ro RD 470kΩ = 219kΩ 18kΩ 470kΩ =16.1kΩ

    Rin = R1 R2 = 2.2MΩ 2.2MΩ = 1.1 MΩ | Rout = ro 18kΩ = 16.6 kΩ

    Av = −gmRLRin

    RI + Rin

    = − 0.501mS( )16.1kΩ( ) 1.1MΩ

    1kΩ+ 1.1MΩ

    = −8.06

    14.78

    *Problem 14.78 - Common-Gate Amplifier - 14.48(k) VDD 5 0 DC 15 VI 1 0 AC 1 *For output resistance *VI 1 0 AC 0 *VO 6 0 AC 1 RI 1 2 1K C1 2 3 2.2U R1 3 0 3.9K RD 4 5 20K C2 4 6 47U RS 6 0 51K M1 4 0 3 3 NMOSFET .OP .AC LIN 1 20KHZ 20KHZ .MODEL NMOSFET NMOS VTO=-2 KP=500U LAMBDA=0.02 .PRINT AC VM(3) VP(3) VM(6) VP(6) IM(VI) IP(VI) IM(C2) IP(C2) .END

    Results: Q-point: (268µA, 8.60V), Av = 4.26, Rin = 1.27 kΩ???Rout?= 18.8 kΩ

  • 14-476

    gm = 2 5x10−4( ) 268x10−6( )1+ 0.02 8.60( )[ ]= 0.560mS | Rin = 3.9kΩ 1gm

    = 1.22kΩ

    ro =50 + 8.60268x10−6

    = 219kΩ | Rth = RI RS = 981Ω

    Rout = ro 1+ gmRth( ) RD = 18.9 kΩ | RL = Rout 51kΩ = 13.8kΩ

    Av =gmRL

    1+ gm RI RS( )RS

    RI + RS

    =

    0.560mS 13.8kΩ( )1+ 0.560mS 0.981kΩ( )

    3.9kΩ1kΩ+ 3.9kΩ

    = 3.97

    14.79 *Problem 14.79 - JFET Common-Source Amplifier - 14.48(m) VDD 5 0 DC -16 VI 1 0 AC 1 *For output resistance *VI 1 0 AC 0 *VO 6 0 AC 1 RI 1 2 5K C1 2 3 2.2U R1 3 0 10MEG RD 4 5 1.8K C2 4 6 10U R3 6 0 36K J1 4 3 0 PJFET .OP .AC LIN 1 3KHZ 3KHZ .MODEL PJFET PJF BETA=200U VTO=-5 LAMBDA=0.02 .PRINT AC VM(3) VP(3) VM(6) VP(6) IM(VI) IP(VI) IM(C2) IP(C2) .END

    Results: Q-point: (5.59 ?A, 5.93 V), Av = -3.27, Rin = 10.0 MΩ?? Rout?= 1.53 kΩ

    gm =2

    −55mA 5.59mA( ) = 2.11mS | ro =

    50 + 5.935.59x10−3

    =10.0kΩ

    Av = -gmRLRG

    RI + RG

    = − 2.11mS( ) 10.0kΩ 1.8kΩ 36kΩ( ) 10MΩ

    10MΩ + 5kΩ

    = −3.09

    Rin = 10.0 MΩ | Rout = RD ro = 1.53 kΩ

    14.80 *Problem 14.69 - Common-Emitter Amplifier - 14.48(n) VCC 7 0 DC 10 VEE 6 0 DC -10 VI 1 0 AC 1 *For output resistance *VI 1 0 AC 0 *VO 8 0 AC 1 RI 1 2 250 C1 2 3 4.7UF RB 3 0 20K R4 4 6 9.1K C2 4 0 100UF L 7 5 1H C3 5 8 1UF

  • 14-477

    R3 8 0 1MEG Q1 5 3 4 NBJT .OP .AC LIN 1 500KHZ 500KHZ .MODEL NBJT NPN IS=1E-16 BF=80 VA=100 .PRINT AC VM(3) VP(3) VM(8) VP(8) IM(VI) IP(VI) IM(C3) IP(C3) .END

    Results: Q-point: (979 µA, 11.0 V), Av = -3420, Rin = 2.09 kΩ???Rout?= 113 kΩ

    rπ =80 0.025V( )

    979µA= 2.04kΩ | ro =

    100 +11.0( )V979µA

    =113kΩ | Rout = ro =113 kΩ

    RL = ro 1MΩ =113kΩ 1MΩ =102kΩ | Rin = RB rπ = 20kΩ 2.04kΩ = 1.85 kΩ

    Av = -gmRLRin

    RI + Rin

    = −40 979µA( ) 102kΩ( ) 1.85kΩ

    250Ω+ 1.85kΩ= −3520

    14.81 *Problem 14.81 - Source Follower - 14.48(o) VDD 5 0 DC 5 VSS 6 0 DC -5 VI 1 0 AC 1 *For output resistance *VI 1 0 AC 0 *VO 7 0 AC 1 RI 1 2 10K C1 2 3 2.2U R1 3 0 1MEG L 4 6 100mH C3 4 7 4.7U R3 7 0 100K M1 5 3 4 4 NMOSFET .OP .AC LIN 1 100KHZ 100KHZ .MODEL NMOSFET NMOS VTO=1 KP=400U LAMBDA=0.02 .PRINT AC VM(3) VP(3) VM(7) VP(7) IM(VI) IP(VI) IM(C3) IP(C3) .END

    Results: Q-point: (3.84 mA, 10.0 V), Av = 0.953, Rin = 1.00 MΩ?? Rout?= 504 Ω

    gm = 2 4x10−4( ) 3.84x10−3( )1+ 0.02 10( )[ ]=1.92mS

    ro =

    10.02

    + 10

    3.84VmA

    = 15.6kΩ − Cannot neglect! | RL =15.6kΩ 100kΩ =13.5kΩ

    Rin = RG =1 MΩ | Rout =1gm

    ro = 504 Ω

    Av = +Rin

    RI + Rin

    gmRL1+ gmRL

    = +

    1MΩ10kΩ + 1MΩ

    1.92mS 13.5kΩ( )1+ 1.92mS 13.5kΩ( )

    = 0.953

  • 14-478

    14.82

    a( ) VEQ =18500 kΩ

    1.4MΩ + 500kΩ= 4.74V | REQ = 500kΩ 1.4 MΩ = 368kΩ

    4.74 =VGS + 27000 ID =1+2IDS

    250 x10−6+ 27000 ID → ID =104µA

    VDS =18 − ID 75kΩ+ 27kΩ( )= 7.39V | Active region operation is correct.

    gm = 2 250 x10−6( )104 x10−6( )= 0.228mS | ro = 50 + 7.39104 µA = 552kΩ | RG = R1 R2 = 368 kΩ

    C1 ≥101

    2πf RI + RG( )= 10

    2π 400Hz( ) 1kΩ + 368kΩ( ) | C1 ≥ 0.0108 µF → 0.01 µF

    C2 ≥101

    2πf RS1

    gm

    = 10

    2π 400Hz( ) 27kΩ 10.228 mS

    | C2 ≥ 1.05 µF →1.0 µF

    C3 ≥101

    2πf RD ro( )+ R3[ ]= 10

    2π 400Hz( ) 66.0kΩ + 470kΩ( ) | C3 ≥ 7.42 nF → 8200 pF

    b( ) C2 =1

    2πf RS1

    gm

    =1

    2π 2000 Hz( ) 27kΩ 10.228mS

    = 0.0211 µF → 0.022 µF

    14.83

    a( ) VEQ = 1262kΩ

    20kΩ + 62kΩ= 9.07V | REQ = 20kΩ 62kΩ = 15.1kΩ

    IB =12 − 0.7 − 9.07( )V

    15.1kΩ + 75 + 1( )3.9kΩ= 7.16µA | IC = 537 µA | VEC = 12− 3900IE − 8200IC = 5.47 V

    Active region is correct.

    rπ =75 0.025V( )

    537µA= 3.49kΩ | ro =

    60+ 5.47537µA

    = 122kΩ | gm = 40IC = 21.5 mS

    Rin = R1 R2 rπ = 15.1kΩ 3.49kΩ = 2.83 kΩ | Rout = ro RC = 122kΩ 8.2kΩ = 7.68 kΩ

    C1 ≥ 101

    2πf RI + Rin( )= 10

    2π 100Hz( )1kΩ+ 2.83kΩ( ) | C1 ≥ 4.16 µF → 0.01 µF

    C2 ≥ 101

    2πfRI REQ + rπ

    βo +1

    =10

    2π 100Hz( )1kΩ 15.1kΩ + 3.49kΩ

    76

    | C2 ≥ 273 µF → 270 µF

    C3 ≥ 101

    2πf Rout + R3[ ]=

    102π 100Hz( ) 7.68kΩ +100kΩ( )

    | C3 ≥ 0.148 µF → 0.15 µF

    b( ) C2 =1

    2πfRI REQ + rπ

    βo +1

    =1

    2π 1000Hz( )1kΩ 15.1kΩ + 3.49kΩ

    76

    = 2.73 µF → 2.7 µF

    14.84

  • 14-479

    IC =1005− 0.7

    104 +101 103( )= 3.87mA | gm = 40IC = 0.155S | rπ =

    100gm

    = 645Ω | ro = ∞

    The capacitors will be negligible at a frequency 10 times the individual break frequencies :

    Req1 =10kΩ rπ + βo + 1( ) 1kΩ 20kΩ( )[ ]= 9.06kΩ | f1 = 102π 9.06kΩ( )2µF = 87.8 Hz

    Req2 = 20kΩ + 1kΩrπ

    βo + 1( )

    = 20.0kΩ | f 2 =

    102π 20.0kΩ( )10µF

    = 7.96 Hz

    Req3 = Rout + 20kΩ = 21.0kΩ | f 3 =10

    2π 21.0kΩ( )10µF= 7.56 Hz

    14.85

    a( ) IC = αF IE =8081

    5 − 0.713.3x103

    = 319µA | gm = 40IC = 12.8mS | rπ =

    80gm

    = 6.26kΩ | ro = ∞

    Req1 = 75Ω + 13.3kΩrπ

    βo + 1( )

    = 152Ω | C1 =

    102π 50kHz( )152Ω

    = 0.209 µF → 0.20 µF

    Req2 = Rout +100kΩ = 8.25kΩ +100kΩ = 108kΩ | C2 =10

    2π 50kHz( )108kΩ= 295 pF → 270 pF

    b( ) C1 = 0.209µF50kHz100Hz

    =105 µF →100 µF | C2 = 295pF

    50kHz100Hz

    = 0.148 µF → 0.15 µF

    14.86

    VEQ =1851kΩ

    51kΩ + 100kΩ= 6.08V | REQ = 51kΩ 100kΩ = 33.8kΩ

    IB =6.08 − 0.7 + 18( )V

    33.8kΩ + 126( ) 4.7kΩ( )= 37.3µA | IC = 4.67 mA | VCE = 36 − 2000IC − 4700IE = 4.54 V

    Active region is correct. | rπ =125 0.025V( )

    4.67mA= 669Ω | ro =

    50 + 4.54( )V4.67mA

    = 11.7kΩ

    RB = R1 R2 = 51kΩ 100kΩ = 33.8kΩ | RL = R3 RE ro = 24kΩ 4.7kΩ 11.7kΩ = 2.94kΩ

    Rin = RB rπ + βo +1( )RL[ ]= 33.8kΩ 669Ω + 126( )2.94kΩ[ ]= 31.0 kΩ

    Rout = RERB RI( )+ rπ

    βo +1= 4.7kΩ

    33.8kΩ 500Ω( )+ 669Ω126

    = 9.22 Ω

    C1 =10

    2πf RI + Rin( )= 10

    2π 100Hz( ) 500Ω + 31.0kΩ( )= 0.505µF → 0.50 µF

    C2 =10

    2πf R3 + Rout( )=

    102π 100Hz( ) 24kΩ + 9.22Ω( )

    = 0.663µF → 0.68 µF

  • 14-480

    14.87 Note : RS ≡ R1 = 3.9kΩ

    VGS = −3900ID = −39005x10−4( )

    2VGS + 2( )

    2 | VGS = −0.975 VGS + 2( )

    2→ VGS = −0.9915V

    ID =5x10−4( )

    2VGS + 2( )

    2 = 254µA | VDS =15 − 23.9kΩID = 8.92V - Pinched off.

    gm =2 254µA( )2 − 0.992

    = 0.504mS | ro =50 + 8.92254 x10−6

    = 232kΩ | Rin = 3.9kΩ1

    gm= 1.32kΩ

    Rout = RD ro 1 + gm RS RI( )[ ]= 20kΩ 232kΩ 1 + 0.504mS 3.9kΩ 1kΩ( )[ ]=18.8kΩC1 =

    102πf RI + Rin( )

    = 102π 400Hz( )1kΩ+ 1.32kΩ( )

    =1.72µF →1.8 µF

    C2 =10

    2πf R3 + Rout( )=

    102π 400Hz( ) 51kΩ +18.8Ω( )

    = 0.057µF → 0.056 µF

    14.88

    a( ) Use C2 to set the lower cutoff frequency to 1 kHz. C1 and C3 remain negligible at 1 kHz.C2 = 0.056 µF , C1 = 1800 pF, C3 = 0.015 µF

    (b) SPICE Results: fL = 925 Hz

    14.89

    a( ) Use C3 to set the lower cutoff frequency to 2 kHz. C1 remains negligible at 2 kHz.C1 = 8200 pF, C3 = 820 pF

    b( ) Use C1 to set the lower cutoff frequency to 1 kHz. C2 and C3 remain negligible at 1 kHz.C1 = 0.042 µF , C2 = 1800 pF, C3 = 0.015 µF

    (c) SPICE Results: For (a) fL = 1.96 kHz. For (b) fL = 1.02 kHz

    14.90

    Av =gmRL

    1+ gmRL≥ 0.95 → gmRL ≥ 19 | gm = 2KnID | VGS − VTN =

    2IDKn

    = 0.5V

    ID =0.5( )2 0.03( )

    2= 3.75mA | RL ≥

    192 0.03( ) 0.00375( )

    =1.27kΩ

    RL = RS 3kΩ → RS ≥ 2.19kΩ | VSS = VGS + 3.75mA( )RS | Possible designs :2.4kΩ, 11.5V ; 2.7kΩ, 12.6V ; 3.0kΩ, 13.75V - Making a choice which uses a nearly minimum value of supply voltage gives : VSS = 12 V ,RS = 2.4 kΩ.

  • 14-481

    14.91 For a common-emitter amplifier with RE = 0,

    Rin ≅ rπ =βoVT

    IC | IC =

    100 0.025V( )75Ω

    = 33.3 mA

    14.92

    Using Eqn. 14.102 : 50 =RE

    1+ 40 4.3( )→ RE = 8.65kΩ | IC ≅

    4.3VRE

    = 497µA

    50 = gmRLRin

    RI + Rin | Assuming RI = 50Ω, 50 =

    gmRL2

    → RL =2 50( )

    40 497µA( )= 5.03kΩ

    RL = RC 100kΩ → RC = 5.30kΩ | VEC = 5 + 0.7 − IC RC = 3.07V - Active region is ok.

    C1 >>1

    2π 500kHz( ) 50Ω + 50Ω( )= 3.18nF → C1 = 0.033 µF

    C2 >>1

    2π 500kHz( )105kΩ( )= 3.02pF → C2 = 33 pF

    14.93 The base voltage should remain half way between the positive and negative power supply voltages. If VEE = +10V and VCC = 0V, then VB should = 5 V which can be obtained using a resistive voltage divider from the +10V supply. We now have the standard four-resistor bias circuit. The base current is 327 µA/80 = 4 µA.

    vS 100 k Ω

    +

    -

    vO

    75 Ω

    C1

    + 10 V

    13 k Ω 8.2 k Ω

    R1 R2

    C2

    CB

    R ER C

    120 k Ω 110 k Ω

    Setting the current in R 1 to 10IB = 40µA, R1 =5V

    40µA= 125kΩ →120kΩ. The

    current in R 2 =11IB = 44µA, and R 2 =5V

    44µA= 114kΩ → 110kΩ.

    Note that the base terminal must now be bypassed with a capacitor.

  • 14-482

    14.94

    Using Eqn. 14.102 : 75 =RE

    1+ 40 8.3( )→ RE = 25.0kΩ | IC ≅

    8.3VRE

    = 332µA

    50 = gmRLRin

    RI + Rin | 50 =

    gmRL2

    → RL =2 50( )

    40 332µA( )= 7.52kΩ | RL = RC 100kΩ → RC = 8.13kΩ

    VEC = 9 + 0.7 − IC RC = 6.98V - Active region is ok.

    C1 >>1

    2π 500kHz( ) 75Ω + 75Ω( )= 2.12nF → C2 = 0.022 µF

    C2 >>1

    2π 500kHz( )108kΩ( )= 2.95 pF → C2 = 30 pF

    14.95

    Rin ≅1gm

    → gm = 2KnID = 0.1S | ID =0.012Kn

    | a( ) ID =0.01

    2 0.005( )=1 A

    b( ) ID =0.01

    2 0.5( )= 10.0 mA | The second FET achieves the desired input resistance

    at much lower current and hence much lower power for a given supply voltage.

    14.96 1

    gm=

    VTIC

    =kTqIC

    ∝ T

    At − 40oC = 233K , 1

    gm= 50Ω

    233k300K

    = 38.8 Ω. | At + 50oC = 323K,

    1gm

    = 50Ω323K300K

    = 53.8 Ω.

    Another approach : At 27oC = 300K, IC =300k50q

    =6kq

    .

    At − 40oC = 233K , 1

    gm=

    2336

    = 38.8 Ω. | At + 50oC = 323K, 1

    gm=

    3236

    = 53.8 Ω.

    14.97

    This analysis assumes that the source and load resistors are fixed, and that only

    the amplifier parameters are changing. Av = gmRLRin

    RI + Rin

    Since RE >> 75Ω, RE RI ≅ 75Ω and Rin ≅ RE1

    gm≅

    1gm

    | Av ≅gmRL

    1+ gmRITo achieve Av

    max , RL → RLmax ,gm → gm

    max which requires

    IC → ICmax = 0.988

    5.25 − 0.7( )V13kΩ 0.95( )

    = 364µA | RLmax = 8.2kΩ 1.05( )100kΩ = 7.93kΩ

  • 14-483

    gm = 40 364µA( ) =14.6mS | Avmax =14.6mS 7.93kΩ( )1+ 0.0146 75( )

    = 55.3

    To achieve A vmin , RL → RL

    min , gm → gmmin which requires

    IC → ICmin = 0.988

    4.75 − 0.7( )V13kΩ 1.05( )

    = 293µA | RLmin = 8.2kΩ 0.95( )100kΩ = 7.23kΩ

    gm = 40 293µA( ) =11.7mS | Avmin =11.7mS 7.23kΩ( )1+ 0.0117 75( )

    = 45.1 | 45.1≤ AV ≤ 55.3

    The range is only slightly larger than that observed in the Monte Carlo analysis in Table 14.16.

    14.98 *Problem 14.76 - Common-Base Amplifier - Monte Carlo Analysis *Generate Voltage Sources with 5% Tolerances IEE 0 8 DC 5 REE 8 0 RTOL 1 EEE 6 0 8 0 1 * ICC 0 9 DC 5 RCC 9 0 RTOL 1 ECC 7 0 9 0 -1 * VS 1 0 AC 1 RS 1 2 75 C1 2 3 47U RE 3 6 RTOL 13K Q1 4 0 3 PBJT RC 4 7 RTOL 8.2K C2 4 5 4.7U R3 5 0 100K .OP .AC LIN 1 10KHZ 10KHZ .PRINT AC VM(5) VP(5) .MODEL PBJT PNP (BF=80 DEV 25%) (VA = 60 DEV 33.33%) .MODEL RTOL RES (R=1 DEV 5%) .MC 1000 AC VM(5) YMAX .END

    Results: Mean value Av = 47.5; 3σ limits: 42.5 = Av = 52.5. However, the worst-case values observed in the

    analysis are Avmin = 43.2 and Av

    max = 51.9. The mean is 5% lower than the design value. The width of the

    distribution is approximately the same as that in Table 14.16.

  • 14-484

    14.99 (a)

    This analysis assumes that the source and load resistors are fixed, and that only

    the amplifier parameters are changing. Av =gmRL

    1+ gmRth

    RERI + RE

    Rth = RE RI and RE

    RI + RE=

    1

    1+RIRE

    where RE =13.3kΩ and RI = 75Ω

    Since R E >> RI , Rth and RE

    RI + REare essentially constant. To achieve Av

    max , RL → RLmax ,gm → gm

    max

    which requires IC → ICmax = 0.988

    5.10 − 0.7( )V13.3kΩ 0.99( )

    = 330µA | RLmax = 8.25kΩ 1.01( )100kΩ = 7.69kΩ

    gm = 40 330µA( )=13.2mS | Avmax =13.2mS 7.69kΩ( )

    1+ 0.0132 75( )13.3 0.99( )

    75 +13.3 0.99( )

    = 50.7

    To achieve Avmin , RL → RL

    min ,gm → gmmin which requires

    IC → ICmin = 0.988

    4.90 − 0.7( )V13.3kΩ 1.01( )

    = 309µA | RLmin = 8.25kΩ 0.99( )100kΩ = 7.55kΩ

    gm = 40 309µA( )=12.4mS | Avmax =12.4mS 7.55kΩ( )1 + 0.0124 75( )

    13.3 1.01( )75 + 13.3 1.01( )

    = 48.2

    (b) Using a Spreadsheet similar to Table 14.16: Mean value Av = 49.6; 3σ limits: 48.2 = Av = 50.9. The worst-case

    values observed in the analysis are Avmin = 48.4 and Av

    max = 50.8.

    14.100 *Problem 14.100 - Common-Base Amplifier - Monte Carlo Analysis *Generate Voltage Sources with 2% Tolerances IEE 0 8 DC 5 REE 8 0 RTOL 1 EEE 6 0 8 0 1 * ICC 0 9 DC 5 RCC 9 0 RTOL 1 ECC 7 0 9 0 -1 * VS 1 0 AC 1 RS 1 2 75 C1 2 3 100U RE 3 6 RR 13.3K Q1 4 0 3 PBJT RC 4 7 RR 8.25K C2 4 5 1U R3 5 0 100K .OP .AC LIN 1 10KHZ 10KHZ .PRINT AC VM(5) VP(5) IM(VS) IP(VS) .MODEL PBJT PNP (BF=80 DEV 25%) (VA = 60 DEV 33.33%) .MODEL RTOL RES (R=1 DEV 2%)

  • 14-485

    .MODEL RR RES (R=1 DEV 1%)

    .MC 1000 AC VM(5) YMAX *.MC 1000 AC IM(VS) YMAX .END

    Results: Mean value: Av = 47.2; 3σ limits: 45.7 = Av = 48.5 Mean value: Rin = 83.4 Ω; 3σ limits: 79.5 Ω = Av = 87.6 Ω

    14.101

    Rin = RE1

    gm=

    RE1+ gmRE

    =RE

    1 + 40IC RE=

    RE

    1+ 408081

    IE RE=

    RE1+ 39.5IERE

    IE RE = 2.5 − 0.7 = 1.8V | 75 =RE

    1 + 39.5 1.8( )→ RE = 5.41kΩ

    IC =8081

    1.8V5.41kΩ

    = 329µA | Rth = 75Ω 5.41kΩ = 74.0Ω | gm = 40 329µA( )= 13.2mS

    Av =gmRL

    1 + gmRth

    RERI + RE

    → RL = 7.59kΩ

    7.59kΩ = RC 100kΩ → RC = 8.21kΩ | VC = −2.5V + IC RC = +0.201V | Oops! We are violating

    our definition of the forward - active region. If we use the nearest 5% values, RE = 5.6kΩ andRC = 8.2kΩ, IC = 318µA and VC = +0.108V . The transistor is just entering saturation.

    14.102 Using a Spreadsheet similar to Table 14.14:

    Mean value: Av = 0.960; 3σ limits: 0.942 = Av = 0.979

    Mean value: ID = 4.91 mA; 3σ limits: 4.27 mA = ID = 5.55 mA

    Mean value: VDS = 7.03 V; 3σ limits: 4.52 V = VDS = 9.54 V

    *Problem 14.102 - Common-Drain Amplifier - Fig. 14.34 *Generate Voltage Sources with 5% Tolerances IDD 0 7 DC 5 RDD 7 0 RTOL 1 EDD 5 0 7 0 1 * ISS 0 8 DC 20 RSS 8 0 RTOL 1 ESS 6 0 8 0 -1 * VGG 1 0 DC 0 AC 1 C1 1 2 4.7U RG 2 0 RTOL 22MEG RS 3 6 RTOL 3.6K C2 3 4 68U R3 4 0 3K M1 5 2 3 3 NMOSFET .OP .AC LIN 1 10KHZ 10KHZ .DC VGG 0 0 1 .MODEL NMOSFET NMOS (VTO=1.5 DEV 33.33%) (KP=20M DEV 50%) LAMBDA=0.02

  • 14-486

    .MODEL RTOL RES (R=1 DEV 5%)

    .PRINT AC VM(4) VP(4) IM(VGG) IP(VGG)

    .MC 1000 DC ID(M1) YMAX *.MC 1000 DC VDS(M1) YMAX *.MC 1000 AC IM(VGG) YMAX *.MC 1000 AC VM(4) YMAX .END

    Results: Mean value: ID = 4.97 mA; 3σ limits: 4.32 mA = ID = 5.62 mA

    Mean value: VDS = 7.19 V; 3σ limits: 6.18 V = VDS = 8.20 V

    Mean value: Rin = 22.0 MΩ; 3σ limits: 20.3 Ω = Rin = 24.0 Ω

    Mean value: Av = 0.956; 3σ limits: 0.936 = Av = 0.976

    14.103

    a( ) Avt =gmRL

    1+ gm 1+ η( )RL=

    0.01S 1kΩ( )1+ 0.01S 1+ 0.5( )1kΩ( )

    = 0.625 | Rin = ∞

    Rout =1

    gm 1+ η( )=

    10.01S 1+ 0.5( )

    = 66.7Ω

    Ai =gmRG

    1+ gm 1+ η( )RL=

    0.01S 1.5MΩ( )1+ 0.01S 1+ 0.5( )1kΩ( )

    = 14.8kΩ

    b( ) Avt and Ai are worse; Rout is improved.

    14.104

    a( ) Avt = −gmRL

    1+ gm 1+ η( )R5= −

    0.01S 2kΩ( )1+ 0.01S 1+ 0.75( ) 200Ω( )

    = −4.44 | Rin = RG

    Rout = ro 1+ gm 1+ η( )R5[ ]= 10kΩ 1+ 0.01S 1.75( ) 200Ω( )[ ]= 45.0 kΩ

    Ai = −gmRG

    1+ gm 1+ η( )R5= −

    0.01S 1MΩ( )1+ 0.01S 1+ 0.75( ) 200Ω( )

    = 2.22kΩ

    b( ) Avt and Ai are reduced; Rout is increased.

    14.105

    a( ) Avt =gm 1+ η( )RL

    1+ gm 1+ η( )Rth=

    0.5mS 1+ 1( )100kΩ( )1+ 0.5mS 1+1( ) 50Ω( )

    = 95.2

    Rin = RS1

    gm 1+ η( )= 100kΩ

    10.5mS 1+1( )

    = 990 Ω

    Ai = gm 1+ η( )Rin = 0.990Rout = ro 1+ gm 1+ η( )Rth[ ]= ro 1+ 0.5mS 1+ 1( ) 50Ω( )[ ]= 1.05rob( ) Avt , Ai and Rout are larger; Rin is smaller.