Chapter 1. Single Particles in a Fluid

9
C h a p t e r 1 . S i n g l e P a r t i c l e s i n a F l u i d 1 . 1 M o t i o n o f S o l i d P a r t i c l e s i n a F l u i d : D r a g F o r c e 1 ) D r a g F o r c e , F D : N e t f o r c e e x e r t e d b y t h e f l u i d o n t h e s p h e r i c a l p a r t i c l e ( d i a m e t e r x ) i n t h e d i r e c t i o n o f f l o w F D = C D ( π 4 d 2 p ) ρ f U 2 2 A r e a K i n e t i c e x e r t e d b y e n e r g y o f f r i c t i o n u n i t m a s s f l u i d w h e r e C D : D r a g c o e f f i c i e n t c f . f o r p i p e f l o w τ w = f ρ f U 2 2 F w = f ( π DL) ρ f U 2 2 w h e r e f : F a n n i n g f r i c t i o n f a c t o r C D v s . R e p - F i g u r e 1 . 1 Re p = d p U ρ f μ w h e r e U : t h e r e l a t i v e v e l o c i t y o f p a r t i c l e w i t h r e s p e c t t o f l u i d - F o r R e p < 1 ( c r e e p i n g f l o w r e g i o n ) F D =3 π d p μ U S t o k e s ( 1 8 5 1 ) ' l a w = ( 24 Re p ) ( π 4 d 2 p ) ρ f U 2 2 C D = 24 Re p c f . f = 16 Re - F o r 500 < Re p <2×10 5

Transcript of Chapter 1. Single Particles in a Fluid

Page 1: Chapter 1. Single Particles in a Fluid

Chapter 1. Single Particles in a Fluid

1.1 Motion of Solid Particles in a Fluid: Drag Force

1) Drag Force, FD:

Net force exerted by the fluid on the spherical

particle(diameter x) in the direction of flow

FD=CD (π

4d2p)

ρfU

2

2

Area Kinetic

exerted by energy of

friction unit mass fluid

where CD : Drag coefficient

cf. for pipe flow

τw= f

ρfU

2

2 → Fw= f (πDL)

ρfU

2

2

where f: Fanning friction factor

CD vs. Rep - Figure 1.1

Rep=dpUρ

f

μ

where U : the relative velocity of particle

with respect to fluid

- For Rep < 1 (creeping flow region)

FD=3πdpμU

Stokes(1851)' law

=( 24Rep )(

π

4d2p)

ρfU

2

2

∴ CD=24Rep

cf. f= 16Re

- For 500 <Re p <2×105

Page 2: Chapter 1. Single Particles in a Fluid

Fluid incontinuum

Particle Particle

Fluid molecules

Fluid molecules

Particle

CD≈0.44

- For intermediate range

CD=24Re p

(1+0.15Re 0.687p )

or

Table 1.1

2) Motion in a Gas: Non-continuum Effect

Mean-free path of fluid

λ=1

2nmπd2m

where

nm : number concentration of molecules

dm : diameter of molecules

For air at 1 atm and 25oC λ = 0.0651 μm

Continuum regime transition regime free-molecule regime

Knudsen number, Kn

Kn=λ

dp

- Continuum regime : Kn~0 (<0.1)

- Transition regime : Kn~1 (0.1~10)

- Free molecule regime : Kn~∞ (>10)

Page 3: Chapter 1. Single Particles in a Fluid

Fg

FD

UT

Corrected drag force

FD=3πdpμU

Cc

where Cc : Cunningham correction factor

Cc=1+Kn[2.5 14+0.8exp(-0.55/Kn)]

dp, μm Cc 0.01

0.05

0.1

1.0

10

22.7

5.06

2.91

1.168

1.017

In air at 1atm and 25oC

1.2 Particle Falling Under Gravity Through a Fluid

1) Terminal Settling Velocity, UT

The velocity of free falling particle when

FD=Fg-FB

∴ CD(π

4d2p)

ρfU

2

2=

π

6(ρ p-ρ

f)d3pg

∴UT=[ 43

gdpCD (

ρp-ρ

f

ρf )]

1/2

For Stokes law regime

3πdpμU

Cc=

π

6(ρ p-ρ

f)d3pg

Page 4: Chapter 1. Single Particles in a Fluid

∴UT=(ρ p-ρ

f)gd2pCc

18μ

dp, μm UT, cm/sa

0.1

0.5

1.0

5.0

10.0

8.8×10-5

1.0×10-3

3.5×10-3

7.8×10-2

0.31

aFor unit density particle in air at 1 atm and 25oC

Worked Example(additional)

Example. In 1883 the volcano Krakatoa exploded, injecting dust 32km up into the

atmosphere. Fallout from this explosion continued for 15 months. If one assumes

settling velocity was constant and neglects slip correction, what was the minimum

particle size present? Assume particles are rock spheres with a specific gravity of

2.7.

∴UT=(ρ p-ρ

f)gd2pCc

18μ=

2.7⋅980⋅d2p⋅1

18⋅1.81⋅10-4

=32⋅10

3⋅10

2

15⋅30⋅24⋅3600=0.0823 cm/s

∴ dp=3.19μm

2) Terminal Settling Velocity for NonStokesian particles

In Newton's regime

UT=1.74(dp(ρ p-ρ

f)gρf )

1/2

For intermediate regime : Trial and error(Numerical) or

CDRe2p ⇒

43

d3pρ f(ρ p-ρf)g

μ 2 ≡K (constant)

logCD= logK-2logRep

Page 5: Chapter 1. Single Particles in a Fluid

Log CD

Log Rep

Log K

Slope=-2

Log Rep

Slope’=1

Log K’ Log Re’p

From Re p,

UT=Repμ

dpρ f

Worked Example 1.6

* dp? for given UT

CDRep

⇒ 43

gμ(ρ p-ρf)

U3Tρ2f

≡K'

logCD= logRep+ logK'

From the Figure above,

dp=Repμ

UTρ f

Worked Example 1.5

http://www.processassociates.com/process/separate/termvel.htm ☞ UT

http://www.processassociates.com/process/separate/termdiam.htm☞ dp

3) Transient Response to Gravitational Field

Page 6: Chapter 1. Single Particles in a Fluid

t

U

τ

UT

Particle diameter, μm Relaxation time, s

0.01

0.1

1.0

10

100

6.8×10- 9

8.8×10- 8

3.6×10- 6

3.1×10- 4

3.1×10- 2

Relaxation time for Unit Density Particles at Standard

Conditions

In general,

Particle motion in gravity

mpdUdt

=Fg-FB-FD

ρp

π

6d3pdUdt

6(ρ p-ρ

f)d3pg-CD(

π

4d2p)

ρfU

2

2

For Stokes' law regime, FD=3πdpμU

Rearranging,

τ dUdt

=τg-U

where τ≡(ρ p-ρ

f)d2pCc

18μ

Relaxation time

Integration yields

U=UT[1-exp(- t/τ)]

* 여기서 τ는 외부의 변화에 처하는 입자의 기민성과 련한다.

Table 1.2

Page 7: Chapter 1. Single Particles in a Fluid

Powders Dynamic shape factor

sphere

cube

cylinder(L/D=4)

axis horizontal

axis vertical

bituminous coal

quartz

sand

talc

1.00

1.08

1.32

1.07

1.05-1.11

1.36

1.57

2.04

Dynamic shape factors of powders

1.3 Nonspherical particles

* CD for nonspherical particles - Figure 1.3

1) Dynamic shape factor, χ

χ=FD

3πdvμU

따라서 비 구형 입자의 항력은 동 형상인자의 값을 알면 구할 수 있다.

2) Equivalent Diameters:

Spheres with the same properties

- Volume-Equivalent diameters

Surface-area equivalent diameters

- Terminal velocity-equivalent diameters

Stokes diameter : dSt=[18μUT

(ρ p-ρf)g ]

1/2

Aerodynamic diameter : da=[18μUT

(ρ 0-ρf)g ]

1/2

- Shape factors

Sphericity, ψ

ψ=(dvdSt )

2

Page 8: Chapter 1. Single Particles in a Fluid

dv=5μm

ρp=4000kg/m3

χ=1.36

ds=4.3μm

ρp=4000kg/m3da=8.6μm

ρp=1000kg/m3

UT=2.2mm/s UT=2.2mm/s UT=2.2mm/s

Irregular particles and its equivalent

spheres

1.S Migration of Particles by Other External Force

Fields

입자는 외부력 장(external force field)하에서 향을 받아 움직인다.

이 때 움직임을 migration, 그 속도를 migration velocity라 부른다.

In Stokes' law regime

Fext=FD (=3πμdpCc

Umig)where Umig : migration or drift velocity in the fields

e.g., For gravitational field,

Fext=π

6d3p(ρ p-ρ)g → UT=

ρpgd

2p

18μCcρ p(ρ p-ρ

f)

terminal settling velocity

Flux by migration

J=CUmig

where C: particle concentration

1) Centrifugal migration

Fc=mp(1-ρf

ρp )U2t

r=mp (1-

ρf

ρp )rω

2

↑ ↑

Acceleration of centrifugation,

cf. g

Page 9: Chapter 1. Single Particles in a Fluid

∴ Ucf=(ρ p-ρ

f)d2pU

2tC c

18μr

단순 력에 의한 것보다 더 높은 가속도를 얻을 수 있으므로 작은 입자의

침강을 보다 빠르게 얻을 수 있다.

2) Electrical Migration

F= qE=neeE

where q : charge of particles

E : strength of electric field

e : charge of electron

(elementary unit of charge)

ne : number of the units

Ue=neeECc3πμd p

기 방법에 의한 입도 측정이나 기집진기의 원리가 된다.