Calculation of ε martensite and stacking fault energies in ...

21
Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014 Calculation of ε martensite and stacking fault energies in austenitic Fe-Mn-C alloys Bengt Hallstedt Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University

Transcript of Calculation of ε martensite and stacking fault energies in ...

Page 1: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

Calculation of ε martensite and stacking fault

energies in austenitic Fe-Mn-C alloys

Bengt Hallstedt

Institute for Materials Applications in Mechanical Engineering,

RWTH Aachen University

Page 2: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

Contents

• Motivation

• Stacking fault energy; measurement and calculation

• Stacking fault energy and ε-martensite in Fe-Mn

• Calculation of T0 and Ms(ε) with Thermo-Calc

• Effect of carbon

• Deformation mechanism maps

• Influence of further alloying elements

• Conclusions

2

Page 3: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

Motivation

3

http://www.metalformingmagazine.com (original

from WorldAutoSteel)

Strength/deformation

strongly controlled by

austenite stability:

TRIP, TWIP, MBIP are

possible

Page 4: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

40

30

20

10

0 0 5 10 15 20 25 30

Volosevich (1974)

Schumann (1974)

Lee (2000); thermodyn. calc.

Sta

pe

lfe

hle

ren

erg

ie (

mJ/m

²)

Mn-Gehalt (Atom-%)

P.Y. Volosevich et al., Phys. Met. Met. 24, 126 (1974).

H. Schumann, Kristall Technik 10, 1141 (1974).

Y.-K. Lee et al., Metall. Mater. Trans. A 31, 355 (2000).

TEM-Experiments: J. Mayer et al., GfE, RWTH Aachen,

2010

Experimental determination of SFE

Fe-22Mn-0.6C

4

Page 5: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

5

SFE = 2ρΔG γ

ε+2σ

a

The molar surface

density of (111)

planes

The molar Gibbs energy of the

transformation γ→ε

The energy of the interface γ/ε

(5 to 15 mJ/m2 )

(111)

a - lattice parameter

N - Avogadros number

A C B A B A C B A fcc

hcp

Fe-Mn 25˚C

Thermodynamic calculation of SFE

Page 6: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

W. Huang, Calphad 13, 243 (1989).

K. Ishida, T. Nishizawa, Trans. JIM 15, 226 (1974).

6

Fe-Mn: Phase diagram

Page 7: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

7

Fe-Mn: Gibbs energies

W. Huang, Calphad 13, 243 (1989).

K. Ishida, T. Nishizawa, Trans. JIM 15, 226 (1974).

Page 8: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

8

Fe-Mn: Gibbs energy of hcp?

Driving force for ε martensite

formation: ΔG = 70 J/mol

(This is the “distance”

between T0 and Ms)

25 °C

W. Huang, Calphad 13, 243 (1989).

Page 9: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

9

Fe-Mn: T0 for fcc/hcp and fcc/bcc

Driving force for ε martensite

formation: ΔG = 70 J/mol

(This is the “distance”

between T0 and Ms)

ΔGγα = 1868 J/mol

Page 10: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

10

Calculation of T0γ/ε with Thermo-Calc

• Suspend all phases except fcc and hcp

• Calculate an equilibrium with fcc and hcp

(e.g. w(Mn)=0.25, T=400)

• Single point:

ADVANCED-OPTION T-ZERO FCC HCP

• Curve:

SET-AXIS-VAR W(MN) 0 0.4 0.01

STEP T-ZERO FCC HCP

Page 11: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

11

Calculation of Msγ/ε with Thermo-Calc

• Suspend all phases except fcc and hcp

• Shift the Gibbs energy of hcp by 70 J/mol

ADV-OPT PHASE-ADDITION HCP 70

• Calculate an equilibrium with fcc and hcp

(e.g. w(Mn)=0.25, T=400)

• Single point:

ADVANCED-OPTION T-ZERO FCC HCP

• Curve:

SET-AXIS-VAR W(MN) 0 0.4 0.01

STEP T-ZERO FCC HCP

Page 12: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

SFE in Fe-Mn

12

Page 13: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

40

30

20

10

0 0 5 10 15 20 25 30

Volosevich (1974)

Schumann (1974)

Lee (2000); thermodyn. calc.

Sta

pe

lfe

hle

ren

erg

ie (

mJ/m

²)

Mn-Gehalt (Atom-%)

P.Y. Volosevich et al., Phys. Met. Met. 24, 126 (1974).

H. Schumann, Kristall Technik 10, 1141 (1974).

Y.-K. Lee et al., Metall. Mater. Trans. A 31, 355 (2000).

SFE in Fe-Mn?

13

G.B. Olson, M. Cohen, Metall. Trans. A, 7A, 1897 (1976).

The SFE in Fe-Mn is negative! (for wt.% Mn < 27)

Page 14: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

14

Calculated γ/ε T0 line

Fe-Mn-C: Driving force for ε-Martensite

(SFE = 2ρΔG γ

ε+2σ)

W. Huang, Metall. Trans. A 21A, 2115 (1990).

Page 15: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

15

Calculated γ/ε T0 line

Fe-Mn-C: ε-Martensite and SFE

The SFE increases by about

5 mJ/m2 for each 0.1 wt.% C

(assuming that σ is constant)

SFE = 2ρΔG γ

ε+2σ

σ = 5 mJ/m2

Page 16: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

16

Calculated γ/ε T0 line SFE as function of Mn content at 25 °C

1.3 wt.% C

0.5 wt.% C

0 wt.% C

Fe-Mn-C: ε-Martensite and SFE

(SFE = 2ρΔG γ

ε+2σ)

σ = 5 mJ/m2

Page 17: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

Deformation mechanisms – ΔGγ→ε

17 Thermodynamic based calculation from L. Mosecker, A. Saeed-Akbari, IEHK, RWTH Aachen, 2011

300 K

TRIP

TWIP

Page 18: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

18

SFE as function of Mn content at 25 °C

1.3 wt.% C

0.5 wt.% C

0 wt.% C

Deformation mechanisms

(SFE = 2ρΔG γ

ε+2σ)

σ = 5 mJ/m2

C.H. White, R.W.K. Honeycombe, J. Iron Steel Inst. 200, 457 (1962).

Page 19: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

Conclusions

• There is strong connection between ε-martensite

formation, SFE and deformation mechanisms.

• Data on ε-martensite formation can be used to model the

hcp phase. T0, Ms and SFE can then be

calculated/estimated.

• SFE < 0 : ε-martensite can grow spontaneously.

Below Ms SFE is negative.

• TRIP takes place between Ms and T0.

TWIP takes place above T0.

• The magnetic transition in fcc (TN) causes non-linear

effects.

19

Page 20: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

20

Thank you for your attention!

Page 21: Calculation of ε martensite and stacking fault energies in ...

Thermo-Calc user meeting, Aachen, Sep. 11-12, 2014

21

ENTER CONSTANT P0=101325

ENTER CONSTANT T0=1

ENTER CONSTANT WMN=0.1

ENTER CONSTANT FEL=1

ENTER CONSTANT EX2=0

IMPORT T0#1

IMPORT WMN#2

IMPORT EX2#4

IMPORT FEL#10

$HCP

CREATE-NEW 1,1

CHANGE-STATUS PHASE HCP=FIX 1

SET-CONDITION P=P0, T=T0, W(MN)=WMN

ENTER VARIABLE GMHCP=GM(HCP);

EVALUATE GMHCP

$

$FCC

CREATE-NEW 2,1

CHANGE-STATUS PHASE FCC=FIX 1

SET-CONDITION P=P0, T=T0, W(MN)=WMN

ENTER VARIABLE GMFCC=GM(FCC);

EVALUATE GMFCC

ENTER VARIABLE EX1=(GMFCC-GMHCP);

$

EXPERIMENT EX1=EX2:FEL

SAVE

END

Calculating T0 with PARROT

• Read data from a database as usual

• Go to PARROT

• Create a store file

CREATE-NEW-STORE-FILE

• Compile the POP-file (shown left)

COMPILE-EXPERIMENTS

• Define variables (to “optimize” temperature)

SET-OPT-VAR 1 400

SET-FIX-VAR 2 0.25

SET-FIX-VAR 4 0 (set to 70 for Ms)

SET-FIX-VAR 10 1

• Optimize (several times until the error sum

is very small)

OPTIMIZE-VARIABLES

• V1 is now T0

LIST-ALL-VARIABLES