Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic...

60
Biomass Production Chain and Growth Biomass Production Chain and Growth Simulation Model for Kenaf Simulation Model for Kenaf QLK5 QLK5 - - CT CT - - 2002 2002 - - 01729 01729 WP3. Development of the Kenaf growth simulation WP3. Development of the Kenaf growth simulation model model University of Thessaly (U University of Thessaly (U Τ Τ H) H) Department of Agriculture,Crop Production & Department of Agriculture,Crop Production & Agricultural Environment Agricultural Environment

Transcript of Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic...

Page 1: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Biomass Production Chain and Growth Biomass Production Chain and Growth Simulation Model for KenafSimulation Model for Kenaf

QLK5QLK5--CTCT--20022002--0172901729

WP3. Development of the Kenaf growth simulation WP3. Development of the Kenaf growth simulation modelmodel

University of Thessaly (UUniversity of Thessaly (UΤΤH)H)

Department of Agriculture,Crop Production & Department of Agriculture,Crop Production & Agricultural EnvironmentAgricultural Environment

Page 2: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Simplified flow chart of kenaf production during Simplified flow chart of kenaf production during one interval of calculationsone interval of calculations

Page 3: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Production Production Situation 1Situation 1

Page 4: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Single leaf assimilationSingle leaf assimilation

A=Amax (1-eε*PAR/Amax)A=Amax (1-eε*PAR/Amax)

Page 5: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Canopy AssimilationCanopy Assimilation

LAIkcef ePAR ×−−=1

Radiation RadiationRadiation

Page 6: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Angle of radiation interception

Light distribution within the crop canopy

Effect of direct and diffuse radiation

Leaf area (index)

Leaf angle (extinction coefficient)

Angle of radiation interceptionAngle of radiation interception

Light distribution within the crop canopyLight distribution within the crop canopy

Effect of direct and diffuse radiationEffect of direct and diffuse radiation

Leaf Leaf area (index)area (index)

Leaf angle (extinction coefficient)Leaf angle (extinction coefficient)

Canopy AssimilationCanopy Assimilation

Page 7: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Model operationsModel operations

Calculation of global radiation

Differentiation of direct from diffuse radiation

Calculation of PAR

Calculation of radiation within the canopy

Calculation of gross canopy assimilation rate

Calculation of dry mass productivity

Dry mass separation to plant organs

Calculation of global radiationCalculation of global radiation

Differentiation of direct from diffuse radiationDifferentiation of direct from diffuse radiation

Calculation of PARCalculation of PAR

Calculation of radiation within the canopyCalculation of radiation within the canopy

Calculation of gross canopy assimilation rateCalculation of gross canopy assimilation rate

Calculation of dry mass productivityCalculation of dry mass productivity

Dry mass separation to plant organsDry mass separation to plant organs

Page 8: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Total radiation.AVRAD (J m-2 d-1)Total radiation.AVRAD (J m-2 d-1)

From the total radiation reaching the atmosphere (DSO = 1370 W/m2), only a part reaches the earth’s surface (AVRAD) according to the value of the atmospheric transmission (ATMTR).

From the total radiation reaching the atmosphere (DSO = 1370 W/m2), only a part reaches the earth’s surface (AVRAD) according to the value of the atmospheric transmission (ATMTR).

AVRAD = DSO x ATMTR

(300-3000nm)

AVRAD = DSO x ATMTR

(300-3000nm)

Page 9: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Direct and diffuse radiationCoefficient FRDIF

Direct and diffuse radiationCoefficient FRDIF

Important improvement of the model comprises the differentiation between of the direct and diffuse parts of the global radiation.

Important improvement of the model comprises the differentiation between of the direct and diffuse parts of the global radiation.

( )

ATMTRforAVRADFRDIF

ATMTRforATMTRAVRADFRDIF

ATMTRforATMTRAVRADFRDIF

ATMTRAVRADFRDIF

≤=

<≤×−=

<≤−−=

<=

75.023.0

75.035.046.133.1

35.007.007.03.21

07.01

2

για

Page 10: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

PAR (J m-2 s-1)PAR (J m-2 s-1)

The part of AVRAD (300-3000 nm) that is photosynthetically active (400-700 nm).The part of AVRAD (300-3000 nm) that is photosynthetically active (400-700 nm).

AVRAD

PAR

PARDIR PARDIF

Page 11: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Radiation within the canopyVIS (J m-2 s-1)

Radiation within the canopyVIS (J m-2 s-1)

PAR is not constant within the canopy but it degreases exponentially with increasing leaf area index. VIS is the value of PAR in every canopy level. PAR is not constant within the canopy but it degreases exponentially with increasing leaf area index. VIS is the value of PAR in every canopy level.

Page 12: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

VIS

VIST (PARDIR)

VISDF (PARDIF)

VISD (PARDIR)

Radiation within the canopyVIS (J m-2 s-1)

Radiation within the canopyVIS (J m-2 s-1)

Page 13: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Instant assimilation rate at any canopy level FGL (kg (CO2) ha-1 h-1)

Instant assimilation rate at any canopy level FGL (kg (CO2) ha-1 h-1)

VIS

PAR

VISSHD

VISSP

FGRSH

FGRSUN

FGLFSLLA

Page 14: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Dry weight increaseDWI (kg ha-1 d-1)

Dry weight increaseDWI (kg ha-1 d-1)

FGL

Integrated for day length

FGC FGASS DWI

Page 15: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

What follows nextWhat follows next

DWI = FGC * (30/44) * CFT * CFW * 0.6 kg ha-1 d-1DWI = FGC * (30/44) * CFT * CFW * 0.6 kg ha-1 d-1

Growth respiration

Maintenance respiration

Growth respiration

Maintenance respiration

Influence of (leaf canopy) temperatureInfluence of (leaf canopy) temperature

Influence of water availability (TRa/TRm)

Influence of water availability (TRa/TRm)

Page 16: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Functional relationsFunctional relations

12 −−×= dJmATMTRDSOAVRAD

⎟⎠⎞

⎜⎝⎛ ×+=

DAYLnbaATMTR

( ) 12

0

sin365

2cos033.011370 −−∫×⎥⎦

⎤⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ ×××+×= dJmdtBDAYDSO

DAYL

π

)365

102cos()45.23(arcsin(sin +××××−=

DAYRADDEC π

( ) )sin(sin DECLATRADSSIN ××=

( ) )cos(cos DECLATRADCCOS ××=

hoursCCOSSSIN

DAYL

⎥⎥⎥⎥

⎢⎢⎢⎢

⎡⎟⎠⎞

⎜⎝⎛×

+×=π

arcsin2112

( ))24

122cos()sin( +×××+=

HOURCCOSSSINB π

Page 17: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

( )

(3.11d)75.023.0

(3.11c)75.035.046.133.1

(3.11b)35.007.007.03.21

(3.11a)07.01

2

ATMTRAVRADFRDIF

ATMTRATMTRAVRADFRDIF

ATMTRATMTRAVRADFRDIF

ATMTRAVRADFRDIF

≤=

<≤×−=

<≤−−=

<=

για

για

για

για

Page 18: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

( ) 12

0

)(nsi

nsi5.0 −−

∫ ′

′××= sJm

dtB

BAVRADPAR DAYL

12)sin(5.0 −−×××= sJmBFRDFIRAVRADPARDIF

12 −−== sJmPARDIFPARPARDIR

( ) 12 )(1 −−×−××−= sleafJmePARREFSVIS LAIk

( ) 12 )(1 −−×−×××−= sleafJmeKDIFPARDIFREFSVISDF LAIKDIF

( ) 12 )(1 −−×−×××−= sleafJmeKDIRTPARDIRREFSVIST LAIKDIRT

( ) 12 )(1 −−×−×××−= sleafJmeKDIRBLPARDIRSCVVISD LAIKDIRBL

Page 19: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

2.018.0 =−×= SCVSCVKDIF

( )BKDIRBL

sin5.0

=

SCVKDIRBLKDIRT −×= 1

SCVSCVREFH

−+−−

=1111

( )BREFHREFS

sin5.01

+×=

Page 20: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

12 )( −−−+= sleafJmVISDVISTVISDFVISSHD

( ) 1121 −−

×−

⎟⎟⎠

⎞⎜⎜⎝

⎛−×= hhaCOkgeAMAXFGRSH AMAX

EFFVISSHD

( ) ( )12 )(

sin1 −−×−= sleafJm

BPARDIRSCVVISSP

( ) 112 )(

11 −−

×−

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎟⎟⎠

⎞⎜⎜⎝

⎛−

×−−×= hhaCOkgVISPPEFF

eFGRSHAMAXAMAXFGRSUN

AMAXEFFVISPP

( ) 112 )(1 −−×−+×= hhaCOkgFGRSHFSLLAFGRSUNFSLLAFGL

LAIKDIRBLeFSLLA ×−=

Page 21: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

15.05.0)( ××+×= LAIILAIILAIC

( ) 1,0,115.05.05.012)( −=×+××+= IIDAYLIHOUR

( ) ( ) ( )( ) 112 )(

6.3106.11)( −−×+×+−= dhaCOkgLAIFGLFGLFGLIFGROS

( ) ( ) ( )( ) 112 )(

6.3106.11 −−×+×+−= dhaCOkgDAYLFGROSFGROSSFGROSFGC

Page 22: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Production Production Situation 1Situation 1

Page 23: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Simplified flow chart of kenaf production during Simplified flow chart of kenaf production during one interval of calculationsone interval of calculations

Page 24: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

THEORETICAL BACKGROUND AND THEORETICAL BACKGROUND AND FUNCTIONAL RELATIONSFUNCTIONAL RELATIONS

Page 25: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

The water balanceThe water balance

RSMsRSMs = IM = IM -- (D + CRISE) (D + CRISE) -- TR(RD)TR(RD)

RSMsRSMs is the change in moisture content of the systemis the change in moisture content of the system

IM IM is the rate of net influx through the upper system is the rate of net influx through the upper system boundaryboundary

(D+CRISE)(D+CRISE) is the rate of net is the rate of net outfluxoutflux through the lower system through the lower system boundary, composed of capillary rise (CRISE) and boundary, composed of capillary rise (CRISE) and drainage to the subsoil (D)drainage to the subsoil (D)

TR(RD) TR(RD) is the rate of water loss from the interior of the is the rate of water loss from the interior of the rooted profile. rooted profile.

All variables are expressed in cm dAll variables are expressed in cm d--11..

Page 26: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

IM = (PREC+IRR+DSIM = (PREC+IRR+DS--ROFF) ROFF) -- EAEA

PREC and IRR are the effective precipitation and PREC and IRR are the effective precipitation and irrigation ratesirrigation rates

DSDS is the rate at which water stored on the surface is the rate at which water stored on the surface declines (DS>=0)declines (DS>=0)

ROFFROFF is surface runis surface run--offoffEAEA is the actual evaporation rate (all in cm dis the actual evaporation rate (all in cm d--11).).

Page 27: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Soil moisture dynamics

Page 28: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Soil profileSoil profile

Page 29: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Soil compartmentsSoil compartments

PSI(n)SMPSI(n)KPSI(n)HEAD(n)VOLW(n)

PSI(n)SMPSI(n)KPSI(n)HEAD(n)VOLW(n)

n-1n-1

V1V1

n+1n+1

nn

V2V2

TCOMTCOM

Page 30: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Functional relations (DarcyFunctional relations (Darcy’’s Law)s Law)

V1=KAV1*(HEAD(n-1)-HEAD(n))/(0.5*(TCOM(n-1)+TCOM(n))

V2=KAV2*(HEAD(n)-HEAD(n+1))/(0.5*(TCOM(n)+TCOM(n+1))(in cm d-1)

HEAD(n) is the hydraulic head in the centre of compartment (n)TCOM(n) is the size of compartment (n) KAV1 and KAV2 are the arithmetic averages of the hydraulic

conductivities

Page 31: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

KAV1 = 0.5*(KPSI(n)+KPSI(n-1)), in cm d-1

KAV2 = 0.5*(KPSI(n)+KPSI(n+1)), in cm d-1

KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1)

Page 32: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

HEAD(nHEAD(n) = ) = Z(nZ(n) ) -- PSI(nPSI(n), in cm), in cm

PSI represents the matrix suction, i.e. the absolute value of the matrix potential (cm)

Z(n) the distance from the centre of compartment (n) to ground-water table

Page 33: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

At ground-water level, Z=PSI=HEAD=0.

A positive value for water moving in downward direction (HEAD>0).

At the middle of each soil compartment, Z is calculated according to the following formulations:

Z(1) = TOTDEP Z(1) = TOTDEP -- 0.5*TCOM(1), in cm0.5*TCOM(1), in cmZ(n) = Z(nZ(n) = Z(n--1) 1) -- 0.5*(TCOM(n0.5*(TCOM(n--1)+TCOM(n)), in cm1)+TCOM(n)), in cm

where TOTDEP is the depth of the ground water from the soil surface (cm).

Page 34: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

The rate of change in the moisture content of each soil compartment is:

RSM = V1 RSM = V1 -- V2 V2 -- TRCOM, in cm dTRCOM, in cm d--11

where TRCOM represents the actual water loss by transpiration (cm d-1).

Page 35: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

The updated volume of water and the corresponding new soil moisture content are given by:

VOLW(n)newVOLW(n)new = = VOLW(n)oldVOLW(n)old + RSM*DELTAT, in cm+ RSM*DELTAT, in cm

SMPSI(nSMPSI(n) = ) = VOLW(n)newVOLW(n)new / / TCOM(nTCOM(n), in cm), in cm33cmcm--33

where VOLW is the water volume, and DELTAT is the time interval of calculations.

Page 36: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Water uptakeWater uptakeMaximum transpiration rateMaximum transpiration rate

11LET = LET = ---------------------------------- * (PENX * NETRA + * (PENX * NETRA + huhu * (EASAT * (EASAT -- EAC)), in J mEAC)), in J m--22dd--11

PENX + gPENX + g

where LET is the evaporative heat loss above the canopy (J m-2d-1)

PENX is the slope of the saturation vapour pressure curve at mean temperature,g is the psychrometer constant (=0.66 mbar oC-1),NETRA is net absorbed radiation (J m-2d-1),hu is the sensible heat transfer coefficient (J m-2d-1K-1),EASAT is the saturated vapour pressure at mean air temperature,

EAC is the actual vapour pressure (both in mbar).

Page 37: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

NETRAdiationNETRAdiation

NETRA = SHRA NETRA = SHRA -- INRA, in J mINRA, in J m--22dd--11

SHRA = (1SHRA = (1--r)*AVRAD, in r)*AVRAD, in J mJ m--22dd--11

INRA = 4900*(TA+273)4*(0.56-0.079*EAC1/2)*(0.1+0.9*SD)

where where AVRAD AVRAD is the total global radiation is the total global radiation J mJ m--22dd--11

r r is the is the albedoalbedo (reflection coefficient) for kenaf (=0.25).(reflection coefficient) for kenaf (=0.25).SDSD is the sunshine duration ratio is the sunshine duration ratio TA TA is the average air temperature (is the average air temperature (ooCC). ). 49004900 is the value of the Stefanis the value of the Stefan--BolzmanBolzman constant (constant (J mJ m--22dd--11KK--44))EACEAC is the actual is the actual vapourvapour pressure (bar)pressure (bar)

Page 38: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

huhu (heat transfer coefficient)(heat transfer coefficient)

The value of the sensible heat transfer coefficient, hu, depends on atmospheric turbulence and is expressed as an empirically determined function of mean wind velocity at a defined height (Penman, 1948):

hu = au*(1+WVAL*WIND) hu = au*(1+WVAL*WIND) in J min J m--22dd--1o1oCC--11

where WIND is the mean wind velocity (m s-1)au and WVAL are empirical constants

Frère & Popov (1979) suggest a value for au of 6.4*105 J mJ m--22dd--1o1oCC--11. Indicative WVAL values are reported by Frère (1979) in the range 0.54-0.89 s m-1, depending on the value of TMAX-TMIN (oC).

Page 39: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Saturated and actual Saturated and actual vapourvapour pressurespressures

EASAT=6.11*exp(17.4*TA/(TA+239) EASAT=6.11*exp(17.4*TA/(TA+239) ((GoudriaanGoudriaan, 1977), 1977)

EAC = EASAT * RHEAC = EASAT * RH

where RH is the average air humidity (%)EAC and EASAT are both expressed in mbar.

Tabulated values for PENXPENX are taken for various combinations of air temperature (TA) and altitude (ALT) in meters above or below sea level (in meters).

Page 40: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Max. TranspirationMax. Transpiration

TRM = 0.1 * LET / L, in cm d-1

where L is the latent heat of vaporization (2.45*106 J kg-1)

Page 41: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Root growth and distributionRoot growth and distribution

IF FRROOT>0 THEN RRG=IF FRROOT>0 THEN RRG=RRGRRG ELSE RRG=0, in cm dELSE RRG=0, in cm d--11

IF RD<RDM THEN RD=RD+RRG ELSE RD=RDM, in cmIF RD<RDM THEN RD=RD+RRG ELSE RD=RDM, in cm

where RD is the momentary rooting depth (cm).

Page 42: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Actual transpiration rateActual transpiration rate

Page 43: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

SMCR = (1SMCR = (1--DEPLF)*(SMODEPLF)*(SMO--0.020.02--SMPWP) + SMPWP, in cmSMPWP) + SMPWP, in cm33cmcm--33

IF SMPSI >= (SMOIF SMPSI >= (SMO--0.02) THEN TR=00.02) THEN TR=0IF (SMOIF (SMO--0.02) >= SMPSI >= (SMO0.02) >= SMPSI >= (SMO--0.06) THEN 0.06) THEN

TR = TRM*(SMOTR = TRM*(SMO--0.020.02--SMPSI)/0.04SMPSI)/0.04IF (SMOIF (SMO--0.06) >= SMPSI >= SMCR THEN TR=TRM0.06) >= SMPSI >= SMCR THEN TR=TRMIF SMCR >= SMPSI >= SMPWP THEN IF SMCR >= SMPSI >= SMPWP THEN

TR = TRM*(SMPSITR = TRM*(SMPSI--SMPWP)/(SMCRSMPWP)/(SMCR--SMPWP)SMPWP)IF SMPWP >= SMPSI THEN TR=0, in cm dIF SMPWP >= SMPSI THEN TR=0, in cm d--11

SMOSMOSMPSISMPSI

SMCRSMCRSMPWPSMPWP

TRTR

TRMTRM

00

Page 44: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Evaluating the soil moisture content of a particular soil compartment, the above equations are used to approximate the fraction of the water actually taken up from this particular compartment (TRCOM).

For that, the maximum uptake rate (TRMCOM, in cm d-1) is calculated assuming root activity evenly distributed over the entire rooting zone.

If, for example, the rooting depth on a particular day is 85 cm,this will be distributed by 100% (full rooting) in the first 4 and by 25% in the 5th soil compartments (of 20 cm). A maximum transpiration rate of, say, TRM=6 cm d-1 would thus be divided over 5 rooted compartments: TRMCOM would be 1.41 cm d-1 for the first 4 compartments and 0.35 cm d-1 for the last one; these values are dictated by the equivalent root density of eachof these compartments.

Page 45: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Actual TranspirationActual Transpiration

⌠day ⌠DEPTH

TR = TRCOM(RD), in cm d-1

⌡0 ⌡0

where

DEPTH is the depth of the soil profile RD in parentheses denotes the dependence of the value of TRCOM on actual rooting depth.

Page 46: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Canopy TemperatureCanopy Temperature

TCAN = TA + (NETRA-10*TR*L)/hu, in oC

where the coefficient 10 (mm cm-1) is used to satisfy

the units.

Page 47: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Boundary conditionsBoundary conditions

AActual evaporationctual evaporation

EA = EM*(SMPSIEA = EM*(SMPSI--SMAD)/(SMOSMAD)/(SMO--SMAD) SMAD) in cm din cm d--11

where where SMPSI, SMO and SMAD represent the actual, saturation, and airSMPSI, SMO and SMAD represent the actual, saturation, and air--dry soil moisture contents of the topsoil respectively (cmdry soil moisture contents of the topsoil respectively (cm33cmcm--33). ). It applies only for the first soil compartment. It applies only for the first soil compartment.

Precise determination of the SMAD is difficult. Here, it is assuPrecise determination of the SMAD is difficult. Here, it is assumed med that the moisture content of airthat the moisture content of air--dry soil is approximately one dry soil is approximately one third of SMPWP (cmthird of SMPWP (cm33cmcm--33).).

Page 48: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

RainfallRainfall--IrrigationIrrigation

In the case of rain or irrigation, the rain intensity (VO, in cm d-1) and the total amount of water (INP-REC or INPIRR, both in cm) are introduced as forcing variables. The duration of the irrigation or rain (DUR, in d) is also known or calculated as the ratio of INPIRR (or INPREC) over VO. In this case, the rate of water influx in the uppermost soil com-partment, V1, is found as follows:

IF INPIRR > 0 THEN DUR=INPIRR/VO ELSE DUR=0 (d)IF INPIRR > 0 THEN DUR=INPIRR/VO ELSE DUR=0 (d)IF S (DELTAT) < DUR THEN V1=(VOIF S (DELTAT) < DUR THEN V1=(VO--EA) ELSE V1= EA) ELSE V1= --EA EA (cm d(cm d--1)1)

Page 49: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Capillary riseCapillary riseCapillary rise takes place if the matrix suction (PSI) is greateCapillary rise takes place if the matrix suction (PSI) is greater r than the gravitational head (Z), according to:than the gravitational head (Z), according to:

IF IF PSI(nPSI(n)>)>Z(nZ(n) THEN V2(n)=CRISE) THEN V2(n)=CRISE

where PSI(n) (in cm) is the matrix suction at the centre of the

lowermost soil compartmentZ(n) (in cm) is the distance from this point to the ground-water

table CRISE is the rate of capillary rise (cm d-1)V2(n) is the flux through the lowermost soil boundary (cm d-1).

Assuming that Z=PSI=0 at ground-water depth and that Z increases upwards, capillary rise (CRISE) over the distance between the lower soil boundary and the ground-water table amounts to:

CRISE = KPSI * [1CRISE = KPSI * [1--(d(PSI)/d Z)](d(PSI)/d Z)], in cm d-1

where KPSI is the hydraulic conductivity (cm d-1).

Page 50: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Working out this Eqn. in the low suction rangelow suction range(below the texture-specific suction limit, PSIMAX) results in:

KOn * (exp(-ALF*Zn)-exp(-ALF*PSIn))CRISE=----------------------------------------------------

1 - exp(-ALF*Zn)

FOR Z ≤ PSI ≤PSIMAX

where

KO is the rate of hydraulic conductivity at saturation (cm d-1)

ALF (cm-1) and PSIMAX (cm) are texture specific constants.

The suffix (n) denotes the lowermost soil compartment.

Note also that CRISE in the above equations has a negative value.

Page 51: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

For the high suction range (PSI>PSIMAX), numerical integration is applied but only if the ground-water table is within the boundaries of the soil profile. Alternatively, tables pre-pared by Rijtema (Danalatos, 1993) are used, relating CRISE over the distance Z to any combination of PSI and Z.

Page 52: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Deep percolation and adjustment of Deep percolation and adjustment of groundground--water depthwater depth

Downward percolation takes place through the lowest soil boundary if the matrix suction at this boundary is less than thedistance to the ground-water depth (PSI<Z):

IF PSI(n)<Z(n) THEN V2(n)=D

where D is the percolation rate (cm d-1).

If it occurs, the percolation rate is approximated with:

D = KPSI(n) * (1-d(PSIn)/dZn), in cm d-1

where KPSIn is the hydraulic conductivity of the lowermost compartment (in cm d-1).

Page 53: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Any flow through the lowest soil boundary affects the moisture content of the subsoil and the depth to ground-water table, which increases (CRISE>0) or decreases (D>0) by a distance DZ.

DZ is approximated with the following relation:

DZ = DZ = --2*(D+CRISE)*DELTAT*/(SMO2*(D+CRISE)*DELTAT*/(SMO--SMPSI), in cmSMPSI), in cm

and the ground-water depth is then adjusted by:

TOTDEP = TOTDEP + DZ, in cmTOTDEP = TOTDEP + DZ, in cm

Page 54: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

The time intervalThe time intervalThe permissible length of DELTAT depends on the dynamics of ongoing processes and is therefore influenced by the choice of compartment sizes.

It appears that DELTAT is proportional to the thickness of the compartments squared and depends furthermore on the diffusivity.

In the detailed simulations 20 compartments were considered viz. 10 compartments of 2 cm, 5 compartments of 4 cm and 5 compartments of 6 cm; the DELTAT was set at one second(11.6*10-6d).

The simplified model uses considerably larger time intervals, inline with the needs of the connected kenaf-production model. DELTAT was finally set at 15 min15 min or 10.4*1010.4*10--33 dd; Diffusivity equations and our trials confirm that a compartment size of 20 cm can be safely used.

Page 55: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

θθ--ψψ and and θθ--kk relationsrelations

For the calculation of SMPSI, a semi-empirical relation is used which contains a texture-specific geometry constant gama (in cm-2, Danalatos et al, 1994)

SMPSI = SMO * exp(-gama*ln(PSI)*ln(PSI))

For the KPSI-PSI relations, Rijtema (1969) have suggested:

KPSI = KO * exp(-ALF*PSI) FOR PSI =< PSIMAXKPSI = AK * PSI-1.4 FOR PSI > PSIMAX

where ALF (cm-1) and AK (cm-2) are texture-specific geometry constants, and PSIMAX (cm) is a texture-specific suction limit.

Page 56: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Influx through the upper soil boundaryInflux through the upper soil boundary

The maximum surface storage capacity of the soil is determined by the surface properties and the slope angle of the land. SSMAX is mathematically described as:

sin2(SIGsin2(SIG--PHI) PHI) cotan(SIG+PHI)+cotan(SIGcotan(SIG+PHI)+cotan(SIG--PHI)PHI)SSMAX=0.5*RG * SSMAX=0.5*RG * -------------------------------------- * * ----------------------------------------------------------------------------------------

sin SIG 2*cos(SIG)*cos(sin SIG 2*cos(SIG)*cos(--PHI)PHI)

where PHI is the slope angle of the land (o), RG is the surface roughness (cm), and SIG is the clod/furrow angle (o).

Page 57: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Simplified flow chart of kenaf production during Simplified flow chart of kenaf production during one interval of calculationsone interval of calculations

Page 58: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

MaterialsMaterialsMaterialsHARDWARE

• Processor: AMD ATHLON XP 2800+

• Mother board: Gigabyte 7N400-Pro

• RAM: 512 MB 400 Mhz

• Hard disk: W.Digital 160 GB

• Graphics: ATI 9600 pro 128 MB Ram

• Screen: LG 1710S

HARDWARE

•• ProcessorProcessor: : AMD ATHLON XPAMD ATHLON XP 2800+2800+

•• Mother boardMother board: : GigabyteGigabyte 7N4007N400--ProPro

•• RAM: RAM: 512 MB 400 512 MB 400 MhzMhz

•• Hard diskHard disk: : W.Digital W.Digital 1160 60 GBGB

•• GraphicsGraphics: : ATI 9600 pro 128 MB RamATI 9600 pro 128 MB Ram

•• ScreenScreen: : LG 1710SLG 1710S

SOFTWARE

• Microsoft Visual Basic 6

•Microsoft Excel 2000

•Helexis Icon Catcher v3.0

•Microsoft Paint for windows XP

SOFTWARE

• Microsoft Visual Basic 6Microsoft Visual Basic 6

••Microsoft Excel 2000Microsoft Excel 2000

••Helexis Icon Catcher v3.0Helexis Icon Catcher v3.0

••Microsoft Paint for windows XPMicrosoft Paint for windows XP

Page 59: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Measured and simulated total dry weight under Measured and simulated total dry weight under optimum conditions in 2003 and 2004optimum conditions in 2003 and 2004

J.D.J.D.

Kg/h

aKg

/ha

0

5000

10000

15000

20000

25000

120 150 180 210 240 270 300 330 360

total-2004-S1total-2004-S2total-2003-S1total-2003-S2sim-2004-S1sim-2004-S2sim-2003-S1sim-2003-S2

Page 60: Biomass Production Chain and Growth Simulation Model for Kenaf · KPSI(n) is the hydraulic conductivity in the compartment (n) (cm d-1) HEAD(n) = Z(n) - PSI(n), in cm PSI represents

Measured and simulated dry stem weight under Measured and simulated dry stem weight under optimum conditions in 2003 and 2004optimum conditions in 2003 and 2004

0

5000

10000

15000

20000

25000

120 150 180 210 240 270 300 330 360

steml-2004-S1 stem-2004-S2 stem-2003-S1 stem-2003-S2

sim-2004-S1 sim-2004-S2 sim-2003-S1 sim-2003-S2

J.D.J.D.

Kg/h

aKg

/ha