Approximationofsubordinate...

24
Approximation of subordinate semigroups via the Chernoff theorem Yana A. Butko 2

Transcript of Approximationofsubordinate...

Page 1: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Approximation of subordinate

semigroups via the Chernoff theorem

Yana A. Butko

2

Page 2: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

1. SEMIGROUPS AND MARKOV PROCESSES

Def: A family (Tt)t≥0 of bounded linear operators on a Banach space Xis called a C0-semigroup, if T0 = Id, Ts ◦ Tt = Ts+t for all t,s ≥ 0 andlimt→0‖Ttϕ−ϕ‖X = 0 for all ϕ ∈X .

Def: The generator (L,Dom(L)) of a C0-semigroup (Tt)t≥0 is defined via

Lϕ := limt→0

Ttϕ−ϕ

t, Dom(L) := {ϕ ∈X : this limit exists }.

Thm: (Tt)t≥0 is a C0-semigroup on a BS X with generator (L,Dom(L))⇐⇒ the Cauchy problem

{dfdt = Lf,f(0) = f0

is correctly posed inX for all f0 ∈Dom(L). And f(t) := Ttf0 is the uniquesolution.

Notation: Tt ≡ etL3

Page 3: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Rem: Let (Xt)t≥0 be a Markov process with transition kernel P (t,x,dy).Then (Tt)t≥0, given by

Ttϕ(x) :=

∫ϕ(y)P (t,x,dy)≡ E

x [ϕ(Xt)] ,

is a semigroup, can be C0 on some BS X of functions ϕ. Therefore,

To construct the C0-semigroup Tt ≡ etL on X with a given generator L

mTo solve the Cauchy problem for the evolution equation df

dt = Lf in X

mTo find the transition probability Pt(x,dy) of the corresponding Markovprocess (Xt)t≥0

4

Page 4: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

2. CHERNOFF APPROXIMATION

OF EVOLUTION SEMIGROUPS

The Chernoff theorem [1968]: Let F : [0,∞)→L(X) be such that

• F (0) = Id,

• ‖F (t)‖6 eat for some a ∈ R and all t> 0,

• the limit Lϕ := limt→0

F (t)ϕ−ϕt exists for all ϕ ∈ D, where D ⊂ X: the

closure (L,Dom(L)) of (L,D) generates a C0-semigroup (Tt ≡ etL)t≥0.

Then

etLϕ = limn→∞

[F (t/n)

]nϕ, ∀ϕ ∈X,

locally uniformly w.r.t. t≥ 0.

Notation: F (t)∼ Tt.5

Page 5: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Ex1: Let L be a bounded operator on X . Then F (t) := Id+tL∼ etL.Hence

etL = limn→∞

[Id+

t

nL

]n.

Ex2: Fk(t)∼ etLk , k = 1, ...,m =⇒ F1(t) ◦ ... ◦Fm(t)∼ et(L1+...+Lm).

Rem: Take k = 2 and Fk(t) := etLk to get the Daletskii–Lie–Trotter

formula:

et(L1+L2) = limn→∞

[etL1/n ◦ etL2/n

]n.

Rem: If F (t) are integral operators, one has

etLϕ= limn→∞

[F (t/n)

]nϕ=

= limn→∞

∫· · ·∫

. . .ϕ(xn)dx1 · · ·dxn ← Feynman formula=

= path integral (Feynman–Kac formula / Feynman path integral)

6

Page 6: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Some recent results: F (t) are constructed: F (t)∼ etL on X , where

• the operatorL generates a Feller process (B., Schilling, Smolyanov 2012)

• Lϕ(x) := tr(A(x)Hessϕ(x))+ b(x) · ∇ϕ(x)+ c(x)ϕ(x)

in C∞(Rd) and in Lp(Rd), p ∈ [1,∞](B., Grothaus, Smolyanov 2010, 2016; Plyashechnik 2013)

• the same L+ Dirichlet boundary conditions(B., Grothaus, Smolyanov 2010)

• Lϕ(x) := a(x)∆Kϕ(x)+ b(x) · ∇Kϕ(x)+ c(x)ϕ(x)

in Cb(K), K is a compact Riemannian manifold

(Butko 2016, 2008 via Smolyanov, Weizsacker, Wittich 2007)

in C∞(K), K is a star graph

(Butko 2015 via Kostrykin, Potthoff, Schrader 2012)

7

Page 7: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

3. SUBORDINATE SEMIGROUPS

To construct a subordinate semigroup/process, one needs:

(1): Original (parent) C0 contraction semigroup (Tt ≡ etL)t≥0 on a BS X /

Markov process (Xt)t≥0.

(2): Subordinator, i.e. (ξt)t≥0⇐⇒ (ηt)t≥0⇐⇒ f ⇐⇒ (σ,λ,µ), where

• (ξt)t≥0 is a Levy-process with a.s. non-decreasing paths;• (ηt)t≥0 is such that P(ξt ∈ A) = ηt(A); it is a convolution semigroupsupported by [0,∞), i.e. ηt are Borel measures on [0,∞), ηt([0,∞))≤ 1,ηt ∗ ηs = ηt+s and ηt ⇀ δ0 as t→ 0;• f is a Bernstein function, such that L [ηt] = e−tf ;• (σ,λ,µ) are Levy characteristics of f , i.e. σ,λ≥ 0, µ is a Radon measureon (0,∞) with

∫∞0+

s1+sµ(ds) such that

f(z) = σ+λz+

∫ ∞

0+

(1− e−sz)µ(ds), ∀z : Re z ≥ 0.

8

Page 8: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Def: The family (T ft )t≥0 defined on the Banach space X by

T ft ϕ :=

∫ ∞

0

Tsϕηt(ds), ∀ϕ ∈X,

is called subordinate to (Tt)t≥0 w.r.t. (ηt)t≥0.

• (T ft )t≥0 is a C0 contraction semigroup corresponding to the subordinate

process (Xξt)t≥0.

• Let (Lf ,Dom(Lf)) be the generator of (T ft )t≥0, then Dom(L) is a core

for Lf and

Lfϕ=−σϕ+λLϕ+

∫ ∞

0+

(Tsϕ−ϕ)µ(ds)≡−f(−L)ϕ, ∀ϕ∈Dom(L),

where (L,Dom(L)) generates the parent semigroup (Tt)t≥0.

9

Page 9: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

4. CHERNOFF APPROXIMATION

OF SUBORDINATE SEMIGROUPS

Let the parent semigroup (Tt)t≥0 be unknown explicitly. Then:

T ft ϕ :=

∫ ∞

0

Tsϕηt(ds) =⇒ unknown

and

Lfϕ=−σϕ+λLϕ+

∫ ∞

0+

(Tsϕ−ϕ)µ(ds) =⇒ unknown

Task: To find F(t)∼ T ft if F (t)∼ Tt is given.

10

Page 10: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Idea 1:

Lfϕ=−σϕ+λLϕ+

∫ ∞

0+

(Tsϕ−ϕ)µ(ds)

11

Page 11: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Idea 1:

Lfϕ=−σϕ+λLϕ+

∫ ∞

0+

(Tsϕ−ϕ)µ(ds)

Therefore,

T ft ≡ etL

f

= et(L2+L1+L0)

with

L2 : L2ϕ=−σϕ =⇒ etL2ϕ= e−tσϕ,

L1 : L1ϕ= λLϕ =⇒ etL1ϕ= et(λL)ϕ= e(tλ)Lϕ≡ Ttλϕ =⇒ F (tλ)∼ etL1,

L0 : L0ϕ=∫∞0+(Tsϕ−ϕ)µ(ds) = Lf0, where f0⇐⇒ (0,0,µ)⇐⇒ (η0t )t≥0.

12

Page 12: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Idea 1:

Lfϕ=−σϕ+λLϕ+

∫ ∞

0+

(Tsϕ−ϕ)µ(ds)

Therefore,

T ft ≡ etL

f

= et(L2+L1+L0)

with

L2 : L2ϕ=−σϕ =⇒ etL2ϕ= e−tσϕ,

L1 : L1ϕ= λLϕ =⇒ etL1ϕ= et(λL)ϕ= e(tλ)Lϕ≡ Ttλϕ =⇒ F (tλ)∼ etL1,

L0 : L0ϕ=∫∞0+(Tsϕ−ϕ)µ(ds) = Lf0, where f0⇐⇒ (0,0,µ)⇐⇒ (η0t )t≥0.

Assume F0(t)∼ etL0 is constructed. Then

F(t) := e−tσ ◦F (tλ) ◦F0(t)∼ T ft .

13

Page 13: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Idea 1:

Lfϕ=−σϕ+λLϕ+

∫ ∞

0+

(Tsϕ−ϕ)µ(ds)

Therefore,

T ft ≡ etL

f

= et(L2+L1+L0)

with

L2 : L2ϕ=−σϕ =⇒ etL2ϕ= e−tσϕ,

L1 : L1ϕ= λLϕ =⇒ etL1ϕ= et(λL)ϕ= e(tλ)Lϕ≡ Ttλϕ =⇒ F (tλ)∼ etL1,

L0 : L0ϕ=∫∞0+(Tsϕ−ϕ)µ(ds) = Lf0, where f0⇐⇒ (0,0,µ)⇐⇒ (η0t )t≥0.

Assume F0(t)∼ etL0 is constructed. Then

F(t) := e−tσ ◦F (tλ) ◦F0(t)∼ T ft .

But how to construct F0(t)?

14

Page 14: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Idea 1:

Lfϕ=−σϕ+λLϕ+

∫ ∞

0+

(Tsϕ−ϕ)µ(ds)

Therefore,

T ft ≡ etL

f

= et(L2+L1+L0)

with

L2 : L2ϕ=−σϕ =⇒ etL2ϕ= e−tσϕ,

L1 : L1ϕ= λLϕ =⇒ etL1ϕ= et(λL)ϕ= e(tλ)Lϕ≡ Ttλϕ =⇒ F (tλ)∼ etL1,

L0 : L0ϕ=∫∞0+(Tsϕ−ϕ)µ(ds) = Lf0, where f0⇐⇒ (0,0,µ)⇐⇒ (η0t )t≥0.

Assume F0(t)∼ etL0 is constructed. Then

F(t) := e−tσ ◦F (tλ) ◦F0(t)∼ T ft .

But how to construct F0(t)?

Note, F0(t) :=∫∞0 F (s)η0t (ds)≁ etL0 =

∫∞0 Tsη

0t (ds) since F ′0(0) 6= L0.

15

Page 15: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Idea 2. Case (a): (η0t )t≥0 is known explicitly (IG, Gamma, e.t.c.).

16

Page 16: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Idea 2. Case (a): (η0t )t≥0 is known explicitly (IG, Gamma, e.t.c.).

Thm: Let m : (0,∞)→ N0 be monotone and m(t)→∞ as t→ 0, e.g.,m(t) := [1/t]. Then F0(t)∼ etL0, where

F0(t)ϕ :=

∫ ∞

0

[F (s/m(t))]m(t)ϕη0t (ds), ϕ ∈X.

17

Page 17: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Idea 2. Case (a): (η0t )t≥0 is known explicitly (IG, Gamma, e.t.c.).

Thm: Let m : (0,∞)→ N0 be monotone and m(t)→∞ as t→ 0, e.g.,m(t) := [1/t]. Then F0(t)∼ etL0, where

F0(t)ϕ :=

∫ ∞

0

[F (s/m(t))]m(t)ϕη0t (ds), ϕ ∈X.

Idea 2. Case (b): (η0t )t≥0 is unknown, but µ is known and bounded.

18

Page 18: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Idea 2. Case (a): (η0t )t≥0 is known explicitly (IG, Gamma, e.t.c.).

Thm: Let m : (0,∞)→ N0 be monotone and m(t)→∞ as t→ 0, e.g.,m(t) := [1/t]. Then F0(t)∼ etL0, where

F0(t)ϕ :=

∫ ∞

0

[F (s/m(t))]m(t)ϕη0t (ds), ϕ ∈X.

Idea 2. Case (b): (η0t )t≥0 is unknown, but µ is known and bounded.

Then L0 : L0ϕ=∫∞0+(Tsϕ−ϕ)µ(ds) is bounded =⇒ Id+tL0 ∼ etL0.

19

Page 19: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Idea 2. Case (a): (η0t )t≥0 is known explicitly (IG, Gamma, e.t.c.).

Thm: Let m : (0,∞)→ N0 be monotone and m(t)→∞ as t→ 0, e.g.,m(t) := [1/t]. Then F0(t)∼ etL0, where

F0(t)ϕ :=

∫ ∞

0

[F (s/m(t))]m(t)ϕη0t (ds), ϕ ∈X.

Idea 2. Case (b): (η0t )t≥0 is unknown, but µ is known and bounded.

Then L0 : L0ϕ=∫∞0+(Tsϕ−ϕ)µ(ds) is bounded =⇒ Id+tL0 ∼ etL0.

Thm: Let m : (0,∞)→ N0 be monotone and m(t)→∞ as t→ 0, e.g.,m(t) := [1/t]. Then Fµ

0 (t)∼ etL0, where

Fµ0 (t)ϕ := ϕ+ t

∫ ∞

0+

([F (s/m(t))]m(t)ϕ−ϕ

)µ(ds), ϕ ∈X.

20

Page 20: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

Example: L : Lϕ(x) = 12tr(A(x)Hessϕ(x))+B(x) ·∇ϕ(x)−C(x)ϕ(x).

In case (a):

F(t)ϕ(q) := e−tσ∞∫

0+

Rd(m(t)+1)

e−tλC(qm(t)+2)− s

m(t)

m(t)∑k=1

C(qk+1)×

× e−

m(t)+1∑k=1

A−1(qk+1)B(qk+1)·(qk+1−qk)e− s

m(t)

m(t)∑k=1

A−1(qk+1)B(qk+1)·B(qk+1)×× e−

tλ2 A

−1(qm(t)+2)B(qm(t)+2)·B(qm(t)+2)ϕ(q1)×

×

pA(tλ,qm(t)+1, qm(t)+2)

m(t)∏

k=1

pA(s/m(t), qk, qk+1)

m(t)+1∏

k=1

dqkη0t (ds)

qm(t)+2 := q and pA(t,x,y) :=1√

detA(x)(2πt)dexp

(− A−1(x)(x−y)·(x−y)

2t

);

21

Page 21: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

In case (b):

Fµ(t)ϕ(q) :=

=exp(−t(σ+λC(q)))√

detA(q)(2πtλ)d

Rd

e−A−1(q)(q−qm(t)+1+tλB(q))·(q−qm(t)+1+tλB(q))

2tλ ×

×(ϕ(qm(t)+1)+ t

∞∫

0+

[ ∫

Rdm(t)

e− s

m(t)

m(t)∑k=1

C(qk+1)m(t)∏

k=1

(detA(qk+1)(2πtλ)

d

)−1/2

× e−

m(t)∑k=1

A−1(qk+1)

(qk+1−qk+

sm(t)

B(qk+1)

(qk+1−qk+

sm(t)

B(qk+1)

)

2s/m(t)

×ϕ(q1)dq1 . . .dqm(t)−ϕ(qm(t)+1)

]µ(ds)

)dqm(t)+1

22

Page 22: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

THANKS FOR THE ATTENTION!

1. Ya.A. Butko. Chernoff approximation of subordinate semigroups and

applications. Preprint. http://arxiv.org/pdf/1512.05258.pdf.

2. Ya.A. Butko, M. Grothaus and O.G. Smolyanov. Feynman formulae

and phase space Feynman path integrals for tau-quantization of some

Levy-Khintchine type Hamilton functions. J. Math. Phys. 57 023508

(2016), 22 p.

3. Ya.A. Butko. Description of quantum and classical dynamics via

Feynman formulae. Mathematical Results in Quantum Mechanics:

Proceedings of the QMath12 Conference, p.227-234. World Scientific,

2014. ISBN: 978-981-4618-13-7 (hardcover), ISBN: 978-981-4618-15-

1 (ebook).

4. Ya.A. Butko. Feynman formulae for evolution semigroups (in Russian).

Electronic scientific and technical periodical ”Science and education”,

DOI: 10.7463/0314.0701581 , N 3 (2014), 95-132.23

Page 23: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

5. Ya.A. Butko, R.L. Schilling and O.G. Smolyanov. Lagrangian and

Hamiltonian Feynman formulae for some Feller semigroups and their

perturbations, Inf. Dim. Anal. Quant. Probab. Rel. Top., 15N 3 (2012),

26 p.

6. B. Bottcher, Ya.A. Butko, R.L. Schilling and O.G. Smolyanov. Feynman

formulae and path integrals for some evolutionary semigroups related to

τ -quantization, Rus. J. Math. Phys. 18 N4 (2011), 387–399.

7. Ya.A. Butko, M. Grothaus and O.G. Smolyanov. Lagrangian Feynman

formulae for second order parabolic equations in bounded and unbounded

domains, Inf. Dim. Anal. Quant. Probab. Rel. Top. 13 N3 (2010),

377-392.

8. Ya.A. Butko. Feynman formulas and functional integrals for diffusion

with drift in a domain on a manifold, Math. Notes 83 N3 (2008), 301–

316.

24

Page 24: Approximationofsubordinate semigroupsviatheChernofftheorembcc.impan.pl/16NOPDE/uploads/talks/Yana-Kinderknec... · Rem: Let (Xt)t≥0 be a Markov process with transition kernel P(t,x,dy

9. V. Kostrykin, J. Potthoff, R. Schrader. Construction of the paths of

Brownian motions on star graphs II, Commun. Stoch. Anal., 6 N 2

(2012), 247-261.

10. A. S. Plyashechnik. Feynman formulas for second-order parabolic

equations with variable coefficients, Russ. J. Math. Phys. 20 N 3

(2013), 377-379.

11. O. G. Smolyanov, H. v. Weizsacker, O. Wittich. Chernoff’s theorem

and discrete time approximations of Brownian motion on manifolds.

Potential Anal., 26 N 1 (2007), 1-29.

25