ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363...

26
ΛΝ—>NN potential with EFT & hypertriton weak decay Axel Pérez-Obiol Collaborators: A. Parreño, B. Juliá, D. R. Entem, A. Nogga Department of Theoretical Physics, Nuclear Physics Institute, Řež FAIRNESS, Sitges, May 29th - June 2nd, 2017

Transcript of ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363...

Page 1: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

ΛΝ—>NN potential with EFT & hypertriton weak decay

Axel Pérez-Obiol Collaborators: A. Parreño, B. Juliá, D. R. Entem, A. Nogga

Department of Theoretical Physics, Nuclear Physics Institute, Řež

FAIRNESS, Sitges, May 29th - June 2nd, 2017

Page 2: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Outline• Motivation: Hypernuclei and hypertriton

• Effective field theory potentials

• NN, YN

• ΛN—>NN

• Hypertriton (non-mesonic) weak decay

Page 3: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Hyperons and hypernucleiHyperons: baryons with strangeness

Mesonic decay: ground state hyperons in free space decay weakly mainly to a baryon and a meson.

Mesonic decay of the Lambda: Λ → p π- (64%) and Λ → n π0 (36%), τ ~ 260 ± 2 ps

Hypernuclei: Bound states of nucleons (p, n) and hyperons (Λ, Σ, Ξ, …)

Λ hypernuclei also decay non-mesonically: ΛN→NN (dominant for A ≥ 5), ΛNN→NNN (DAφNE, JParc)

Page 4: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

HypertritonIt’s the lightest hypernucleus: Λpn, Λ-Σ mix, s=1/2, B=130±50 KeV

It decays faster than the Lambda! Rappold, Saito et al., PLB 728 (2013) 543

The study of its weak decays requires:

• The strong forces among hyperons and nucleons and the weak decay mechanisms.

• Few-body scheme to implement all the interactions

Non-mesonic weak decay with effective field theory (previous work with OME potentials: Golak et al., PRC56 (1997), 2892)

Hypertriton: NN, YN EFT

Final state 3N interactions

NN EFTWeak decay ΛN→NN EFT

Page 5: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Hypernuclear experiments

BNLJLab

JParc

DAΦNE

JINR

GSI FAIR MAMI

ALICE

Page 6: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Hypernuclear experiments

BNLJLab

JParc

DAΦNE

JINR

GSI FAIR MAMI

Γnm

Γnm

ALICE

• Nn (Tn,θn) • Np (Tp,θp) • τnm

Page 7: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Hypernuclear experiments

BNLJLab

JParc

DAΦNE

JINR

GSI FAIR MAMI

Γnm

Γnm

ALICE

τΛH3

• Nn (Tn,θn) • Np (Tp,θp) • τnm

τΛH3

τΛH3

Page 8: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Effective field theoryA systematic approximation to some underlying dynamics valid at a certain energy scale

Method:

1. Separate low and high energy scales and identify relevant degrees of freedom and symmetries

2. Construct organisational scheme (momentum expansion)

3. Build the most general Lagrangian with these d.o.f. and symmetry constraints

4. Calculate matrix elements up to a certain order in the expansion

Page 9: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Example: the nuclear force• Seminal work S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez,

L. Ray, and U. van Kolck, PRC 53 (1996) 2086. N3LO D.R. Entem and R. Machleidt, PRC 68 (2003) 041001

E. Epelbaum, W. Glöckle, Ulf-G. Meißner, NPA747 (2005) 362

• Separate low and high energy scales and identify relevant degrees of freedom and symmetries:

Low energy scale: q < 300 MeV

Hard scale: ΛQCD ~ MN ~1 GeV

Degrees of freedom: pions, mπ ~138 MeV

Symmetries: chiral symmetry (π are goldstone bosons)

Page 10: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Example: the nuclear force• Construct organisational scheme

Heavy baryon: expand in q/MN and mπ /MN (q0 ~ MN → treat nucleons non-relativistically)

Expand V chirally with Weinberg power counting and use regularized Lippmann-Schwinger eq. (NN bound states, large scattering lengths).

Page 11: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Example: the nuclear force• Build the most general Lagrangian and calculate Feynman diagrams

LQCD → LEFT = Lππ + LπN + LNN + L3N + …

LO: contact interaction (unresolved short distance) + one-pion exchange (long range Yukawa potential)

C1 + C2 σ1·σ2 + 1/(q2+m2) —> e-m·r

NLO: contact interactions plus two-pion exchanges (intermediate range attraction)

NNLO: sub-leading two-pion exchanges and three-nucleon force

Page 12: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

EFT for YN• LO: H. Polinder, J. Haidenbauer, U.-G. Meißner, NPA 779 (2006) 244; PLB 653 (2007) 29; J. Haidenbauer, U.-

G. Meißner, A. Nogga, H. Polinder, Lect. Notes Phys. 724 (2007) 113; J. Haidenbauer, U.-G. Meißner, PLB 684 (2010) 275.

• NLO: J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A. Nogga, W. Weise, NPA 915 (2013) 24; S.

Petschauer, N. Kaiser, NPA 916 (2013) 1

• Other approaches: C.L. Korpa, A.E.L. Dieperink, R.G.E. Timmermans, PRC 65 (2001) 015208 S.R. Beane, P.F. Bedaque, A. Parreño, M.J. Savage, NPA 747 (2005) 55

• New degrees of freedom (pseudoscalar mesons π, K, η)

• Larger symmetry: SU(3)

• Less data, constrain through hypernuclei

Page 13: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

EFT for ΛΝ —> NN• LO: J.-H. Jun (2001); A. Parreño, C. Bennhold, B.R. Holstein (2004); Zhu, S.-lin, C.M.

Maekawa, B.R. Holstein, U.V. Kolck (2005)

• NLO: Pérez-Obiol, Entem, Juliá-Díaz, Parreño, (2013, 2016)

• Low energy scale: q ~ 400 MeV (exothermic reaction)

• Degrees of freedom: π and K

• Symmetries: we also allow for PV

• Expansion in q/MB, mπ /MB and ΔM /MB

Page 14: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

EFT for ΛΝ —> NNLO: contact interactions, one-pion and one-kaon exchanges

C1 + C2 σ1·σ2

14

π Κ

Vµ (!q) = −iGFmπ2 gBBµ

2MΑ̂µ −

B̂µ

2M!σ 1 ⋅!q

⎝⎜

⎠⎟

!σ 2 ⋅!q

−q02 + !q2 +mπ

2 ; µ = π , K .

Α̂π = Aπ!τ1 ⋅!τ 2; Α̂Κ = CK

PV

2+ DK

PV + CKPV

2!τ1 ⋅!τ 2;

Β̂π = Βπ!τ1 ⋅!τ 2; Β̂Κ = CK

PC

2+ DK

PC + CKPC

2!τ1 ⋅!τ 2

Page 15: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

EFT for ΛΝ —> NNNLO: higher order contact interactions:

15

Momentum space:

Coordinate space:

Page 16: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

EFT for ΛΝ —> NNNLO: two-pion exchanges:

• 10 loop diagrams, e.g.

• 4 kinds of loop integrals, e.g.

• Comparison between OPE, OKE and TPE

16

Jµ...�(r) =1

i

�d3q

(2�)3ei�q·�r

�d4l

(2�)41

l2 � m2 + i�

1

(l + q)2 � m2 + i�

1

�l0 � q�0 + i�

1

�l0 + i�lµ...l�

Page 17: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Non-mesonic weak decay of the hypertriton

Γ3N = 128π3MN

9 mJ3mimti

∑ dp12p122∫ p3 dθ sin θ( )∫ ψ mJ3mimti

1+Vs1

E + iε − H⎛⎝⎜

⎞⎠⎟ 1+ P( )V12w ψ

Λ3H

2

• Use EFT YN, NN and ΛN—>NN potentials

• Possible decay products: d+n and 3N

• Average over initial spins and integrate over all final states

• Example: decay to 3N

Page 18: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Decay rate to 3N

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

p12NN (fm-1 )

Hypertriton NN distributionDeuteron distribution

Hypertriton wave function:

• YN and NN, NLO potentials H. Polinder, J. Haidenbauer, U.G. Meissner, NPA, 779, 244-266, 2006

• Important of Σ component

• Similar to deuteron + Λ

Γ3N = 128π3MN

9 mJ3mimti

∑ dp12p122∫ p3 dθ sin θ( )∫ ψ mJ3mimti

1+Vs1

E + iε − H⎛⎝⎜

⎞⎠⎟ 1+ P( )V12w ψ

Λ3H

2

Page 19: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Decay rate to 3NΓ3N = 128π

3MN

9 mJ3mimti

∑ dp12p122∫ p3 dθ sin θ( )∫ ψ mJ3mimti

1+Vs1

E + iε − H⎛⎝⎜

⎞⎠⎟ 1+ P( )V12w ψ

Λ3H

2

Non-mesonic weak decay

• LO ΛN —> NN EFT

• Testing contribution of ΣN —> NN EFT

Final state interactions by directly solving the iterative equations

• Solve two body force

• Solve rescattering state U

π Κ

Page 20: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Decay rate to 3NΓ3N = 128π

3MN

9 mJ3mimti

∑ dp12p122∫ p3 dθ sin θ( )∫ ψ mJ3mimti

1+Vs1

E + iε − H⎛⎝⎜

⎞⎠⎟ 1+ P( )V12w ψ

Λ3H

2

Non-mesonic weak decay

• LO ΛN —> NN EFT

• Testing contribution of ΣN —> NN EFT

Final state interactions by directly solving the iterative equations

• Solve two body force

• Solve rescattering state U

π Κ

Page 21: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Final state interactions through Stieltjes and Lorentz transformations

• Add spurious degree of freedom

• Stieltjes transform and use completeness

• Solve iterative equation for large enough σ

• Make inverse transformation with singular value decomposition

Decay rate to 3N

Page 22: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Decay rate to 3NΓ3N = 128π

3MN

9 mJ3mimti

∑ dp12p122∫ p3 dθ sin θ( )∫ ψ mJ3mimti

1+Vs1

E + iε − H⎛⎝⎜

⎞⎠⎟ 1+ P( )V12w ψ

Λ3H

2

• Γ3Ν ~ 10Γd+n

• K destructive interference

Page 23: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Decay rate to 3NΓ3N = 128π

3MN

9 mJ3mimti

∑ dp12p122∫ p3 dθ sin θ( )∫ ψ mJ3mimti

1+Vs1

E + iε − H⎛⎝⎜

⎞⎠⎟ 1+ P( )V12w ψ

Λ3H

2

• Explore the parameter space (LECs C0 and C1 )

• LECs with opposite signs interfere constructively

Page 24: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Hypertriton decay rates

Γnm3N = 128π

3MN

9 mJ3mimti

∑ dp12p122∫ p3 dθ sin θ( )∫ ψ mimti

1+Vs1

E + iε − H⎛⎝⎜

⎞⎠⎟ 1+ P( )V12w ψ

Λ3H

2

Γnmd+n = 32π

2MN

9p3d+n

mJ3mj12m3∑ ψ mj12m3

1+ (Vs −V12 )1

E + iε − H⎛⎝⎜

⎞⎠⎟ 1+ P( )V12w ψ

Λ3H

2

Γmd+n = MN

6MN + 2Eπ

q(d+n)mJ3mimti

∑ dp3∫ p32 dθ sin θ( )∫ ψ mimti

1+ (Vs −V12 )1

E + iε − H⎛⎝⎜

⎞⎠⎟ 1+ P( )V3w ψ

Λ3H

2

Γm3N = MN

3MN + Eπ mJ3mimti

∑ dp12p122∫ dp3p3

2∫ dθ12 sin θ12( )∫ dθ3 sin θ3( )∫ q(3N ) ψ mimti1+Vs

1E + iε − H

⎛⎝⎜

⎞⎠⎟ 1+ P( )V3w ψ

Λ3H

2

ΓmHe = MHeq

(He)

12π (MHe + Eπ ) mJ3mHe

∑ ψ mHe1+ P( )V3w ψ

Λ3H

2

• 5 possible weak decays: 2 non-mesonic + 3 mesonic

Page 25: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Summary and conclusions• The hypertriton can be studied with precise few-body techniques.

Its weak non-mesonic decay has been studied complementing exact wave functions obtained solving Faddeev equations with the leading order piece of the weak ΛN —> NN transition

• We have developed an EFT for the two-body ΛN —> NN transition driving the decay of hypernuclei.

• The 2π exchange mechanism has been incorporated systematically in the EFT. It has a sizeable effect at medium and short ranges and should play an important role once more experimental data are available.

• Due to the lack of experimental data we have explored the decay rate as a function of the two low-energy constants appearing at leading order.

Page 26: ΛΝ—>NN potential with EFT & hypertriton weak decay · S. Weinberg, PLB 251 (1990) 288; NPB 363 (1991) 3. First application C. Ordoñez, L. Ray, and U. van Kolck, PRC 53 (1996)

Current/future work• Explore the effect of final state interactions and

the Σ contribution. • Through Stieltjes and Lorentz transformations

• Compute the mesonic decays, beginning with 3LH —> He + π- • FSI through pionic distorted waves

• A=4 hypernuclei.

ΓmHe = MHeq

(He)

12π (MHe + Eπ ) mJ3mHe

∑ ψ mHe1+ P( )V3w ψ

Λ3H

2