Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ......

55
Effective field theories for non-relativistic bound states Antonio Vairo Technische Universit ¨ at M ¨ unchen

Transcript of Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ......

Page 1: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Effective field theories fornon-relativistic bound states

Antonio Vairo

Technische Universitat Munchen

Page 2: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Matter is made of bound states

• Electromagnetic bound states: atoms, molecules, ...

• Strong-interaction bound states: hadrons, nuclei, ...(At low T and ρ, confinement only allows for bound states!)

10-1

1

10

10 2

10 3

1 10 102

ρω φ

J/ψψ(2S)

Page 3: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

... many of them non-relativistic

• atoms, molecules, ...

• baryonium, pionium, ...

• quarkonium (charmonium, bottomonium, top-antitop pairs, ... )

Page 4: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Non-relativistic quantum theory of bound states

Non-relativistic bound states accompanied the history of the quantum theory from itsinception to the establishing of the quantum theory of fields:

• 1926 Schrödinger equation:„

p2

2m+ V

«

φ = Eφ

g = g0 + g0(−iV )g = +

xg0 = i

E−p2/(2m)

{

• 1927 Pauli equation:„

(p − eA)2

2m+ V −

σ · eB

2m

«

φ = Eφ

The relevant scales of the non-relativistic bound state dynamics are

• E ∼p2

2m∼ V ∼ mv2, • p ∼ 1/r ∼ mv;

a crucial observation: if v(elocity)≪ 1, then m≫ mv ≫ mv2.

Page 5: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Relativistic quantum theory of bound states

• 1928 Dirac equation: (iD/−m)ψ = 0

gD = gD0 + gD

0 (−ieA/)gD = +

gD0 = i

p/−m{• 1951 Bethe–Salpeter equation:

G = G0 +G0KG

�������������������������

�������������������������

�������������������������

�������������������������

��������������������

��������������������

= +G K G

G0 = gD0 (p1) ⊗ gD

0 (p2){

which reduces to the Schrodinger equation in the non-relativistic limit,E(ext) ∼ mv2,p(ext) ∼ mv:

+ + + ... = + ... = −iV + ...K =

gD0 (fermion/anti-fermion) =

i

±p0 + E/2 − p2/2m+ iǫ

1 ± γ0

2+ ...

Page 6: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The Bethe–Salpeter equation for non-relativistic states ...

The non-relativistic expansion may be implemented systematically at the level of theBethe–Salpeter equation:

K = KV + δK where KV ≈ −iV and GV = G0 +G0KV GV can be solved

G = GV +GV δKG

◦ Lepage PRA 16(77)863, Barbieri Remiddi NPB 141(78)413

Page 7: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

... and its problems

• cumbersome in perturbation theory;

• very poorly suited to achieve factorization (specially important in QCD).

Ex.

• It shows the difficulty of the approach the fact that going from the calculation of themα5 correction in the hyperfine splitting of the positronium ground state to themα6 lnα term took twenty-five years!◦ Karplus Klein PR 87(52)848, Caswell Lepage PRA (20)(79)36

Bodwin Yennie PR 43(78)267

• With few exceptions no applications to QCD and quarkonium physics.◦ Modritsch Kummer ZPC 66(95)225

Page 8: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

... and its problems

• cumbersome in perturbation theory;

• very poorly suited to achieve factorization (specially important in QCD).

Why?

• All energy scales of the full dynamics contribute:each diagram has a complicated power counting and contributes to all orders inthe coupling and velocity.

• Another way of saying is that the non-relativistic bound state dynamics, describedby the Schrödinger equation at the soft scale p ∼ 1/r ∼ mv, gets entangled withthe relativistic dynamics at the scale m (e.g. radiative corrections) and thelow-energy dynamics at the ultrasoft scale mv2 (e.g. the Lamb shift).

Page 9: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Effective Field Theories

Whenever a system H, described by a Lagrangian L, is characterized by 2 scalesΛ ≫ λ, observables may be calculated by expanding one scale with respect to the other.An effective field theory makes the expansion in λ/Λ explicit at the Lagrangian level.

The EFT Lagrangian, LEFT , suitable to describe H at scales lower than Λ is defined by(1) a cut off Λ ≫ µ≫ λ;(2) by some degrees of freedom that exist at scales lower than µ

⇒ LEFT is made of all operators On that may be built from the effective degrees

of freedom and are consistent with the symmetries of L.

Page 10: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Effective Field Theories

LEFT =X

n

cn(Λ/µ)On(µ, λ)

Λn

• Since at µ ∼ λ, 〈On〉 ∼ λn, the EFT is organized as an expansion in λ/Λ.

• The EFT is renormalizable order by order in λ/Λ.

• The matching coefficients cn(Λ/µ) encode the non-analytic behaviour in Λ. Theyare calculated by imposing that LEFT and L describe the same physics at anyfinite order in the expansion: matching procedure.

• In QCD, if Λ ≫ ΛQCD then cn(Λ/µ) may be calculated in perturbation theory.

Page 11: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

EFTs for systems made of two heavy quarks/fermions

mv2

µ

mv

m

µ

perturbative matching perturbative matching

perturbative matching

QCD/QED

NRQCD/NRQED

pNRQCD/pNRQED

SHORT−RANGELONG−RANGEQUARKONIUM QUARKONIUM / QED

non−perturbativematching

... ... ...

����������

����������

...

+ ...+

∼ mv

p ∼ m

E ∼ mv2

• They exploit the expansion in v/ factorization of low and high energy contributions.• They are renormalizable order by order in v.• In perturbation theory, RG techniques provide resummation of large logs.

Page 12: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

EFTs for systems made of two heavy quarks/fermions

mv2

µ

mv

m

µ

perturbative matching perturbative matching

perturbative matching

QCD/QED

NRQCD/NRQED

pNRQCD/pNRQED

SHORT−RANGELONG−RANGEQUARKONIUM QUARKONIUM / QED

non−perturbativematching

◦ Caswell Lepage PLB 167(86)437◦ Lepage Thacker NP PS 4(88)199◦ Bodwin et al PRD 51(95)1125, ...

◦ Pineda Soto NP PS 64(98)428◦ Brambilla et al PRD 60(99)091502◦ Brambilla et al NPB 566(00)275◦ Kniehl et al NPB 563(99)200◦ Luke Manohar PRD 55(97)4129◦ Luke Savage PRD 57(98)413◦ Grinstein Rothstein PRD 57(98)78◦ Labelle PRD 58(98)093013◦ Griesshammer NPB 579(00)313◦ Luke et al PRD 61(00)074025◦ Hoang Stewart PRD 67(03)114020, ...

◦ for a review Brambilla Pineda Soto Vairo RMP 77(04)1423

Page 13: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

EFTs for systems made of two heavy quarks/fermions

mv2

µ

mv

m

µ

perturbative matching perturbative matching

perturbative matching

QCD/QED

NRQCD/NRQED

pNRQCD/pNRQED

SHORT−RANGELONG−RANGEQUARKONIUM QUARKONIUM / QED

non−perturbativematching

V (r)(0)

(GeV)

2

1

0

-1

1 2 r(fm)

Υ Υ Υ

χ ψ ψ

Υ

2η ψc

ΛQCD

Low lyingQQ High lyingQQ

◦ Godfrey Isgur PRD 32(85)189A potential picture arises at the level of pNRQCD:• the potential is perturbative if mv ≫ ΛQCD

• the potential is non-perturbative if mv ∼ ΛQCD

Page 14: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

NRQCD

NRQCD is obtained by integrating out modes associated with the scale m

��������

��������

... ... ... ...

QCD NRQCDQCD

×c(µ/m)

• The matching is perturbative.

• The Lagrangian is organized as an expansion in 1/m and αs(m):

LNRQCD =X

n

c(αs(m/µ)) ×On(µ, λ)/mn

Suitable to describe annihilation and production of quarkonium.

Page 15: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

pNRQCD

pNRQCD is obtained by integrating out modes associated with the scale1

r∼ mv

+ + ...... ... ...

+ ...++ ...

NRQCD pNRQCD

1

E − p2/m− V (r)

• The Lagrangian is organized as an expansion in 1/m , r, and αs(m):

LpNRQCD =X

k

X

n

1

mk× ck(αs(m/µ)) × V (rµ′, rµ) ×On(µ′, λ) rn

Page 16: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Case 1: pNRQCD formv ≫ ΛQCD

• Degrees of freedom:

Q-Q states, with energy ∼ ΛQCD, mv2 and momentum <∼mv

⇒ (i) singlet S (ii) octet O

Gluons with energy and momentum ∼ ΛQCD, mv2

• Power counting:

p ∼1

r∼ mv;

all gauge fields are multipole expanded: A(R, r, t) = A(R, t) + r · ∇A(R, t) + . . .

and scale like (ΛQCD or mv2)dimension.

Non-analytic behaviour in r → matching coefficients V

Page 17: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Case 1: pNRQCD formv ≫ ΛQCD

L = −1

4Fa

µνFµν a + Tr

S†

i∂0 −p2

m− Vs

«

S

+ O†

iD0 −p2

m− Vo

«

O

ff

LO in r

θ(T ) e−iTHs θ(T ) e−iTHo

e−iR

dt Aadj”

Page 18: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Case 1: pNRQCD formv ≫ ΛQCD

L = −1

4Fa

µνFµν a + Tr

S†

i∂0 −p2

m− Vs

«

S

+ O†

iD0 −p2

m− Vo

«

O

ff

LO in r

The equation of motion of the singlet,„

i∂0 −p2

m− Vs

«

S = 0,

is the Schrödinger equation!

Page 19: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Case 1: pNRQCD formv ≫ ΛQCD

L = −1

4Fa

µνFµν a + Tr

S†

i∂0 −p2

m− Vs

«

S

+ O†

iD0 −p2

m− Vo

«

O

ff

+VATrn

O†r · gES + S†r · gEOo

+VB

2Trn

O†r · gEO + O†Or · gEo

+ · · ·

LO in r

NLO in r

Page 20: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Case 1: pNRQCD formv ≫ ΛQCD

O†r · gES O†{r · gE, O}

+VATrn

O†r · gES + S†r · gEOo

+VB

2Trn

O†r · gEO + O†Or · gEo

NLO in r

Page 21: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

• At leading order in the multipole expansion, the equation of motion of the EFT isthe Schrödinger equation. Higher-order terms correct this picture (these higherorder terms are responsible, for instance, for the Lamb shift).

• The Schrödinger potential, Vs, emerges as a Wilson coefficient of the EFT. Assuch, it undergoes renormalization, develops scale dependence and satisfiesrenormalization group equations, which allow to resum large logarithms.

Page 22: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The static potential in perturbation theory

=

NRQCD

+

pNRQCD

+ ...eigH

dzµAµ

Page 23: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The static potential in perturbation theory

=

NRQCD

+

pNRQCD

+ ...eigH

dzµAµ

limT→∞

i

Tln = Vs(r, µ) − i

g2

NcV 2

A

Z ∞

0dt e−it(Vo−Vs) 〈Tr(r · E(t) r · E(0))〉(µ) + . . .

ultrasoft contribution

Page 24: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The static potential in perturbation theory

=

NRQCD

+

pNRQCD

+ ...eigH

dzµAµ

limT→∞

i

Tln = Vs(r, µ) − i

g2

NcV 2

A

Z ∞

0dt e−it(Vo−Vs) 〈Tr(r · E(t) r · E(0))〉(µ) + . . .

ultrasoft contribution

The µ dependence cancels between the two terms in the right-hand side:

• Vs ∼ ln rµ, ln2 rµ, ...

• ultrasoft contribution ∼ ln(Vo − Vs)/µ, ln2(Vo − Vs)/µ, ... ln rµ, ln

2 rµ, ...

Page 25: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

• The static Wilson loop is known up to NNLO ...... since Monday/Thursday up to N3LO!!

◦ Schr oder PLB 447(99)321

Smirnov et al PLB 668(08)293

Anzai Kiyo Sumino arXiv:0911.4335

Smirnov Smirnov Steinhauser arXiv:0911.4742

• The octet potential is known up to NNLO.

◦ Kniehl et al PLB 607(05)96

• VA = 1 + O(α2s ).

◦ Brambilla et al PLB 647(07)185

• The chromoelectric correlator 〈Tr(r · E(t) r · E(0))〉 is known up to NLO.

◦ Eidem uller Jamin PLB 416(98)415

Page 26: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The static potential at N4LO

Vs(r, µ) = −CFαs(1/r)

r

"

1 + a1αs(1/r)

4π+ a2

αs(1/r)

«2

+

16π2

3C3

A ln rµ+ a3

« „

αs(1/r)

«3

+

aL24 ln2 rµ+

aL4 +

16

9π2 C3

Aβ0(−5 + 6 ln 2)

«

ln rµ+ a4

«„

αs(1/r)

«4#

aL24 = −

16π2

3C3

A β0

aL4 = 16π2C3

A

»

a1 + 2γEβ0 + nf

−20

27+

4

9ln 2

«

+CA

149

27−

22

9ln 2 +

4

9π2

«–

◦ Brambilla et al PRD 60(99)091502, PLB 647(07)185

Page 27: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The static potential at N4LO

Vs(r, µ) = −CFαs(1/r)

r

"

1 + a1αs(1/r)

4π+ a2

αs(1/r)

«2

+

16π2

3C3

A ln rµ+ a3

« „

αs(1/r)

«3

+

aL24 ln2 rµ+

aL4 +

16

9π2 C3

Aβ0(−5 + 6 ln 2)

«

ln rµ+ a4

«„

αs(1/r)

«4#

• The logarithmic contribution at N3LO may be extracted from the one-loopcalculation of the ultrasoft contribution;

• the single logarithmic contribution at N4LO may be extracted from the two-loopcalculation of the ultrasoft contribution.

Page 28: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The static potential at N3LL

Vs(r, µ) = Vs(r, 1/r) +2

3CF r

2 [Vo(r, 1/r) − Vs(r, 1/r)]3

×

2

β0ln

αs(µ)

αs(1/r)+ η0 [αs(µ) − αs(1/r)]

«

η0 =1

π

»

−β1

2β20

+12

β0

−5nf + CA(6π2 + 47)

108

«–

• The leading logarithmic contribution has been resummed using RG equations atLL accuracy.

◦ Pineda Soto PLB 495(00)323

• The next-to-leading logarithmic contribution has been resummed using RGequations at NLL accuracy.

◦ Brambilla Garcia Soto Vairo PRD 80(09)034016

Page 29: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Static quark-antiquark energy at N3LL

E0(r) = Vs(r, µ) + Λs(r, µ) + δUS(r, µ)

Λs(r, µ) = NsΛ + 2CF (No −Ns)Λ r2 [Vo(r, 1/r) − Vs(r, 1/r)]

2

×

2

β0ln

αs(µ)

αs(1/r)+ η0 [αs(µ) − αs(1/r)]

«

δUS(r, µ) = CFC3

A

24

1

r

αs(µ)

πα3

s (1/r)

−2 lnαs(1/r)Nc

2r µ+

5

3− 2 ln 2

«

Ns, No are two arbitrary scale-invariant dimensionless constantsΛ is an arbitrary scale-invariant quantity of dimension one

Page 30: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Static quark-antiquark energy at N3LL vs lattice

0.15 0.20 0.25 0.30 0.35 0.40 0.45

-2.0

-1.5

-1.0

-0.5

0.0

r � r0

r 0HE

0HrL-

E0H

r minL+

E0la

tt.Hr

minLL r0 ≈ 0.5 fm

δa3

0.15 0.20 0.25 0.30 0.35 0.40 0.45

-2.0

-1.5

-1.0

-0.5

0.0

r � r0

r 0HE

0HrL-

E0H

r minL+

E0la

tt.Hr

minLL

δ non-pert. contributions

0.15 0.20 0.25 0.30 0.35 0.40 0.45

-2.0

-1.5

-1.0

-0.5

0.0

r � r0

r 0HE

0HrL-

E0H

r minL+

E0la

tt.Hr

minLL

δαs

0.15 0.20 0.25 0.30 0.35 0.40 0.45

-2.0

-1.5

-1.0

-0.5

0.0

r � r0

r 0HE

0HrL-

E0H

r minL+

E0la

tt.Hr

minLL

δ pert. h.o. contributions

• No evidence of violation of the OPE expansion up to 0.2 fm.• By comparison, the 3 loop coefficient is a3 = 1.11+0.06

−0.03 × 105.

◦ Brambilla et al PRD 80(09)034016◦ Necco Sommer NPB 622(02)328

Page 31: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Static quark-antiquark potential at N3LO

(an update of 26.11.09)

A recent analytical calculation gives

a3 = 108854+0−1

◦ Anzai et al arXiv:0911.4335, Smirnov et al arXiv:0911.4742

220 240 260 280 300 320 340-2

-1

0

1

2

c0

K2

K2 = (No −Ns)Λ

a3 ∼ c0 = 222.703(6)

Page 32: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Applications to quarkonium physics

• c and b masses at NNLO, N3LO∗, NNLL∗;

• Bc mass at NNLO;

• B∗c , ηc, ηb masses at NLL;

• Quarkonium 1P fine splittings at NLO;

• Υ(1S), ηb electromagnetic decays at NNLL;

• Υ(1S) and J/ψ radiative decays at NLO;

• Υ(1S) → γηb, J/ψ → γηc at NNLO;

• tt cross section at NNLL;

• Leading thermal effects on quarkonium in a medium: masses, widths, ...

• ...

◦ for reviews Brambilla et al Heavy Quarkonium Physics CERN Yellow Report

Vairo EPJA 31(07)728, IJMPA 22(07)5481

Page 33: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

c and b masses

reference order Mb(Mb) (GeV)

◦ Brambilla et al 01 NNLO +charm (Υ(1S)) 4.190 ± 0.020 ± 0.025

◦ Penin Steinhauser 02 NNNLO∗ (Υ(1S)) 4.346 ± 0.070

◦ Lee 03 NNNLO∗ (Υ(1S)) 4.20 ± 0.04

◦ Contreras et al 03 NNNLO∗ (Υ(1S)) 4.241 ± 0.070

◦ Pineda Signer 06 NNLL∗ high moments SR 4.19 ± 0.06

reference order Mc(Mc) (GeV)

◦ Brambilla et al 01 NNLO (J/ψ) 1.24 ± 0.02

◦ Eidem uller 02 NNLO high moments SR 1.19 ± 0.11

Page 34: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

αs from Υ(1S) decay

• New CLEO data on Υ(1S) → γ X,• new lattice determinations of NRQCD matrix elements,

have led to an improved NLO analysis of Γ(Υ(1S) → γ X)/Γ(Υ(1S) → X)

and to an improved determination of αs at the Υ-mass scale:

αs(MΥ(1S)) = 0.184+0.015−0.014, αs(MZ) = 0.119+0.006

−0.005

◦ Brambilla Garcia Soto Vairo PRD 75(07)074014

0

0.1

0.2

0.3

1 10 102

µ GeV

α s(µ) ◦ PDG 2006

QCD α (Μ ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

αs (Q)

1 10 100Q [GeV]

Heavy Quarkoniae+e– AnnihilationDeep Inelastic Scattering

July 2009

◦ Bethke 2009

Page 35: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Electromagnetic decays ofΥ(1S) andηb

Rb =Γ(Υ(1S)→e+e−)

Γ(ηb→γγ)

µ (GeV)

ℜb

0

0.5

1

1.5

2

2.5

3

1 1.5 2 2.5 3 3.5 4 4.5 5

LO . . .

NLO _ _ _

NNLO __ __ __

NLL _ . _ .

NNLL _____

Γ(ηb(1S) → γγ) = 0.659 ± 0.089(th.)+0.019−0.018(δαs) ± 0.015(exp.) keV

◦ Penin et al NPB 699(04)183, Pineda Signer NPB 762(07)67

Page 36: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Υ(1S) → γ X

0.2 0.4 0.6 0.8 1z

200

400

600

800

1000

1200

1400

0.2 0.4 0.6 0.8 1z

200

400

600

800

1000

1200

1400

=2Eγ

Photon spectrum at NLO (continuous lines, pNRQCD + SCET) vs CLEOdata

◦ Garcia Soto PRD 72(05)054014, Fleming Leibovich PRD 67(03) 074035

Page 37: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Applications to QED bound states

Many QED calculations have remarkably benefitted from the EFT approach andcorrections of very high order in perturbation theory have been calculated in the lastyears for many observables after decades of very slow or no progress ...

... just to mention that

• for the hyperfine splitting of the positronium ground state the terms of order mα6,mα7 ln2 α and mα7 lnα are now available!

◦ for reviews on positronium Karshenboim IJMPA 19(04)3879

Penin IJMPA 19(04)3897

Page 38: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Case 2: pNRQCD formv ∼ ΛQCD

• All scales above mv2 are integrated out (including ΛQCD).

Page 39: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Case 2: pNRQCD formv ∼ ΛQCD

• All scales above mv2 are integrated out (including ΛQCD).

• All gluonic excitations between heavy quarks are integrated out since they developa gap of order ΛQCD with the static QQ energy.

-3

-2

-1

0

1

2

3

0.5 1 1.5 2 2.5 3

[E(r

)-E

(r0]

r 0

r/r0

quenchedκ = 0.1575

◦ Bali et al PRD 62(00)054503

(r0 ≃ 0.5 fm)E

(0)0

E(0)1

Page 40: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Case 2: pNRQCD formv ∼ ΛQCD

• All scales above mv2 are integrated out (including ΛQCD).

• All gluonic excitations between heavy quarks are integrated out since they developa gap of order ΛQCD with the static QQ energy.

⇒ The singlet quarkonium field S of energy mv2 is the only degree of freedom ofpNRQCD (up to ultrasoft hadrons, e.g. pions).

Page 41: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Case 2: pNRQCD formv ∼ ΛQCD

L = Tr

S†

i∂0 −p2

m− Vs

«

S

ff

◦ Brambilla Pineda Soto Vairo PRD 63(01)014023

Page 42: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Case 2: pNRQCD formv ∼ ΛQCD

L = Tr

S†

i∂0 −p2

m− Vs

«

S

ff

◦ Brambilla Pineda Soto Vairo PRD 63(01)014023

• The potential Vs (ReVs + i ImVs) is non-perturbative:

(a) to be determined from the lattice;◦ Bali PR 343(01)1

(b) to be determined from QCD vacuum models.◦ Brambilla Vairo PRD 55(97)3974

Page 43: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Case 2: pNRQCD formv ∼ ΛQCD

L = Tr

S†

i∂0 −p2

m− Vs

«

S

ff

◦ Brambilla Pineda Soto Vairo PRD 63(01)014023

• (Without light hadrons) the Schrödinger equation is exact!... which confirms the physical picture underlying potential models for heavy quarks.

Page 44: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The non-perturbative static potential

V(0)s = lim

T→∞

i

Tln

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

V0(

r)

[GeV

]

1.00.80.60.40.20.0

r [fm]

β = 6.0 β = 6.3

◦ Koma Koma NPB 769(07)79

Page 45: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The non-perturbative1/m potential

1/m and 1/m2 potentials may be expressed in terms of expectation values of fieldinsertions in a static Wilson loop.

◦ Brambilla Pineda Soto Vairo PRD 63(01)014023

◦ Pineda Vairo PRD 63(01)054007

Lattice provides a non-perturbative determination of the potentials.

-1.5

-1.0

-0.5

0.0

0.5

1.0

V(1

) (r)

- V

(1) (r

= 0

.8r 0)

[1

/r 02 ]

2.01.51.00.50.0

r / r0

β=5.85 β=6.0 β=6.2

1/m potential r0 ≈ 0.5 fm

◦ Koma Koma Wittig PoS LAT2007(07)111, Koma Koma arXiv:0911. 3204

Page 46: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The non-perturbative spin-independentp2/m2 potentials

-1.5

-1.0

-0.5

0.0

0.5

Vb

(r)

-Vb

(r =

0.8

r 0)

[1/r 0

]

2.01.51.00.50.0

r / r0

β=5.85 β=6.0 β=6.2 fit curve (β=6.0)

-1.5

-1.0

-0.5

0.0

0.5

Vd

(r)

-Vd

(r =

0.8

r 0) [1

/r0]

2.01.51.00.50.0

r / r0

β=5.85 β=6.0 β=6.2 fit curve (β=6.0)

-1.5

-1.0

-0.5

0.0

0.5

Vc

(r)

-Vc

(r =

0.8

r 0) [

1/r 0

]

2.01.51.00.50.0

r / r0

β=5.85 β=6.0 β=6.2 fit curve (β=6.0)

-1.5

-1.0

-0.5

0.0

0.5

Ve

(r)

[1/r

02 ]

2.01.51.00.50.0

r / r0

β=5.85 β=6.0 β=6.2 fit curve (β=6.0)

◦ Koma Koma Wittig PoS LAT2007(07)111, Koma Koma arXiv:0911. 3204

Page 47: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The non-perturbative spin-dependent1/m2 potentials

-5

-4

-3

-2

-1

0

V1 (r

) [1

/r02 ]

2.52.01.51.00.50.0

r / r0

β=5.85 β=6.0 β=6.2 β=6.3 fit curve (β=6.0)

VLS VLS

5

4

3

2

1

0

V2 (r

) [1

/r02 ]

2.52.01.51.00.50.0

r / r0

β=5.85 β=6.0 β=6.2 β=6.3 fit curve (β=6.0)

VT

40

30

20

10

0

V3 (r

) [1

/r03 ]

2.01.51.00.50.0

r / r0

β=5.85 β=6.0 β=6.2 β=6.3 fit curve (β=6.0)

VSS

-12

-10

-8

-6

-4

-2

0

2

V4 (r

) [1

/r03 ]

2.01.51.00.50.0

r / r0

β=5.85 β=6.0 β=6.2 β=6.3

◦ Koma Koma NPB 769(07)79, Koma Koma arXiv:0911.3204

Page 48: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

hc

0

50

100

150

200

250

300

350

3.5 3.51 3.52 3.53 3.54 3.55

π0 recoil mass in GeV

Eve

nts

/2 M

eV

ψ(2S) → π0hc → 3γηc

Mhc= 3524.4 ± 0.6 ± 0.4 MeV

◦ CLEO PRL 95(05)102003

Also

Mhc= 3525.8 ± 0.2 ± 0.2 MeV, Γ < 1 MeV

◦ E835 PRD 72(05)032001

• To be compared with Mc.o.g.(1P ) = 3525.36 ± 0.2 ± 0.2 MeV.

Page 49: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Poincaré invariance

Non-relativistic EFTs are equivalent, order by order in v, to the original relativisticquantum field theory. In particular, this applies also to Poincaré invariance, which isapparently badly broken, but actually is not.

Poincaré invariance manifests itself in the EFT by constraining the form of the potentials.

◦ Dirac RMP 21(49)392, Foldy PR 122(61)275

Page 50: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Poincaré invariance

For any Poincaré invariant theory the generators H, P, J, K of time translations, spacetranslations, rotations, and Lorentz boosts satisfy the Poincaré algebra:

[Pi,Pj ] = 0

[Pi, H] = 0

[Ji,Pj ] = iǫijkPk

[Ji, H] = 0

[Ji,Jj ] = iǫijkJk

[Pi,Kj ] = −iδijH

[H,Ki] = −iPi

[Ji,Kj ] = iǫijkKk

[Ki,Kj ] = −iǫijkJk

h =p2

1

2m1+

p22

2m2+ V (0)(r) +

V (1)(r)

m1+V (1)(r)

m2

+V (2,0)

m21

+V (0,2)

m22

+V (1,1)

m1m2+ . . .

H = m1 +m2 + h

P = p1 + p2

J = x1 × p1 + x2 × p2 + S1 + S2

K = −tP +1

2

2X

i=1

(

xi,mi +pi

2

2mi+V (0)

2+V (1)

mi+ . . .

)

−Si × pi

mi(1 + . . . )

!

Page 51: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

The algebra constraints the potentials:

• V(2,0)LS − V

(1,1)L2S1

+V (0)′

2r= 0

• V(2,0)

L2 (r) + V(0,2)

L2 (r) − V(1,1)

L2 (r) +r

2V (0)′(r) = 0

• − 2(V(2,0)

p2 (r) + V(0,2)

p2 (r)) + 2V(1,1)

p2 (r) − V (0)(r) + rV (0)′(r) = 0

• ... ... ...

◦ Gromes ZPC 26(84)401, Barchielli Brambilla Prosperi NCA 10 3(90)59

◦ Brambilla Gromes Vairo PRD 64(01)076010, PLB 576(03)314

Page 52: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Constraint on the spin-dependent potentials

A lattice determination of V (2,0)LS − V

(1,1)L2S1

+V (0)′

2r= 0

5

4

3

2

1

0

[1/

r 02 ]

2.01.51.00.50.0

r / r0

V0' β=5.85 V0' β=6.0 V0' β=6.2 V2'-V1' β=5.85 V2'-V1' β=6.0 V2'-V1' β=6.2

-0.2

-0.1

0.0

0.1

0.2

1 -

(V

2'-V

1')/V

0'

2.01.51.00.50.0

r / r0

β=5.85 β=6.0 β=6.2

◦ M.Koma Y.Koma NPB 769(07)79, Koma Koma arXiv:0911.3204

Page 53: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Constraint on the spin-independent potentials I

A lattice determination of V (2,0)

L2 (r) + V(0,2)

L2 (r) − V(1,1)

L2 (r) +r

2V (0)′(r) = 0

◦ M.Koma Y.Koma Wittig PoS LAT2007(07)111

Page 54: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Constraint on the spin-independent potentials II

A lattice determination of −2(V(2,0)

p2 (r) + V(0,2)

p2 (r)) + 2V(1,1)

p2 (r) − V (0)(r) + rV (0)′(r) = 0

◦ M.Koma Y.Koma Wittig PoS LAT2007(07)111

Page 55: Effective field theories for non-relativistic bound states · Caswell Lepage PLB 167(86)437 ... Kniehl et al NPB 563(99)200 Luke Manohar PRD 55(97)4129 Luke Savage PRD 57(98)413

Conclusions

Non-relativistic bound states have a prominent role in nature, as we know it, becausethey are at the basis of human-scale processes. For the same reason, they had aprominent role in the development of the quantum theory from the Schrödinger equationof the hydrogen atom to the quantum theory of fields. In face of the enormous difficultiesin treating bound states in field theory, a long journey started in the seventies thateventually led to a new understanding of the Schrödinger equation.

The Schrödinger equation we have come back encompasses all the complexity andrichness of field theory in the systematic setting of non-relativistic effective field theories.The counting rules and structure of the EFTs have allowed to perform calculation withunprecedented precision, where higher-order perturbative calculations were possible,and to systematically factorize short from long range contributions where observableswere sensitive to the non-perturbative, infrared dynamics of QCD.