AMS 212B Perturbation Methods - University of California...

12
- 1 - AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC Example: Eigenvalue problem with a turning point inside the interval ′′ y + λ 2 x 1 x 2 2 y = 0 y 1 ( ) = 0, y 1 () = 0 The ODE for y(x) has the form y’’(x)+λ 2 f(x) y(x) = 0 with f(x)= x(1-x/2) 2 . The WKB expansion for x > 0 and x < 0: φ 0 x ( ) i fs () ds 0 x i s 1 s 2 ds 0 x i 2 3 x 3 2 1 5 x 5 2 = ±iT 1+ , x > 0 ±T 1, x < 0 where T 1+ = 2 3 x 3 2 1 5 x 5 2 , x > 0 T 1= 2 3 x 3 2 + 1 5 x 5 2 , x < 0 φ 1 x ( ) = 1 4 log f x ( ) = 1 4 log x 1 x 2 2 A general solution at large λ is yx ( ) = 1 x 1 x /2 ( ) 2 1/4 a cos λT 1+ ( ) + b sin λT 1+ ( ) , x > 0 1 x 1 x /2 ( ) 2 1/4 c exp λT 1( ) + d exp −λT 1( ) , x < 0 Suppose y(t) is the eigenfunction of a large eigenvalue λ. y(-1) = 0 (T1–)|x=–1 = 13/15

Transcript of AMS 212B Perturbation Methods - University of California...

- 1 -

AMS212BPerturbationMethodsLecture14

CopyrightbyHongyunWang,UCSC

Example:

Eigenvalueproblemwithaturningpointinsidetheinterval

′′y +λ2x 1− x2⎛⎝⎜

⎞⎠⎟

2

y =0

y −1( ) =0 , y 1( ) =0

⎨⎪⎪

⎩⎪⎪

TheODEfory(x)hastheformy’’(x)+λ2f(x)y(x)=0withf(x)=x(1-x/2)2.

TheWKBexpansionforx>0andx<0:

φ0 x( ) = ±i f s( )ds

0

x

∫ = ±i s 1− s2⎛⎝⎜

⎞⎠⎟ds

0

x

∫ = ±i 23 x32 − 15 x

52

⎝⎜⎞

⎠⎟=

±iT1+ , x >0±T1− , x <0

⎧⎨⎪

⎩⎪

where

T1+ =23 x

32 − 15 x

52

⎝⎜⎞

⎠⎟, x >0

T1− =23 x

32 + 15 x

52

⎝⎜⎞

⎠⎟, x <0

φ1 x( ) = −14 log f x( ) = −14 log x 1− x2

⎛⎝⎜

⎞⎠⎟

2

Ageneralsolutionatlargeλis

y x( ) =

1

x 1− x /2( )21/4 a⋅cos λT1+( )+b ⋅sin λT1+( )⎡⎣ ⎤⎦ , x >0

1

x 1− x /2( )21/4 c ⋅exp λT1−( )+d ⋅exp −λT1−( )⎡⎣ ⎤⎦ , x <0

⎪⎪⎪⎪

⎪⎪⎪⎪

Supposey(t)istheeigenfunctionofalargeeigenvalueλ.

y(-1)=0 (T1–)|x=–1=13/15

AMS212BPerturbationMethods

- 2 -

==>c ⋅exp λ1315

⎛⎝⎜

⎞⎠⎟+d ⋅exp −λ1315

⎛⎝⎜

⎞⎠⎟=0

==>cd= −exp −λ2615

⎛⎝⎜

⎞⎠⎟≈0

Usingtheconnectionformulas,wehave

a= 122d + c( )

b= 122d − c( )

⎨⎪⎪

⎩⎪⎪

==>ab= 2+ c /d2− c /d ≈1 Constraintfromy(-1)=0

Ontheotherhand,usingtheboundaryconditionatx=1,weobtain

y(1)=0, (T1+)|x=1=7/15

==>a⋅cos λ 715

⎛⎝⎜

⎞⎠⎟+b ⋅sin λ 715

⎛⎝⎜

⎞⎠⎟=0

==>ab= − tan λ 715

⎛⎝⎜

⎞⎠⎟ Constraintfromy(1)=0

Combiningthetwoconstraintsona/bfromtwoboundaryconditions,wearriveat

tan λ 715

⎛⎝⎜

⎞⎠⎟= −1 ==> λ(7/15)=(n–1/4)π

==> λ=(15/7)(n–1/4)π

Largeeigenvaluesare

λn ≈

157 n− 14⎛⎝⎜

⎞⎠⎟π , n=integer,nlarge.

Nextweconsiderthecasewhereoneboundaryconditionfallsontheturningpoint.

Example (Skipthisexampleinlecture):

Eigenvalueproblemwithaturningpointataboundary

AMS212BPerturbationMethods

- 3 -

′′y +λ2x 1− x2⎛⎝⎜

⎞⎠⎟

2

y =0

y 0( ) =0 , y 1( ) =0

⎨⎪⎪

⎩⎪⎪

TheWKBexpansionforx>0:

y WKB( ) x( ) = 1

x 1− x /2( )21/4 a⋅cos λT1+( )+b ⋅sin λT1+( )⎡⎣ ⎤⎦ , x >0

whereT1+ =

23 x

32 − 15 x

52

⎝⎜⎞

⎠⎟

Theinnersolutionnearx=0:

yinn( ) x( ) =αAi −λ

23x( )+βBi −λ2

3x( ) Atx=0,wehave

y(0)=0 ==> αAi(0)+βBi(0)=0PropertyofAiryfunctions:

Ai 0( ) = Bi 0( )

3= 132/3Γ 2/3( ) ≠0

(Wewillderivethispropertywhenwediscussasymptoticexpansionsofintegrals).UsingthispropertyofAiryfunction,wehave

αβ= −

Bi 0( )Ai 0( )= − 3

Recalltherelationbetween(α,β)and(a,b)

a= 1π λ1/6

α+β

2⎛⎝⎜

⎞⎠⎟

b= 1π λ1/6

α−β

2⎛⎝⎜

⎞⎠⎟

⎪⎪

⎪⎪

==>ab= α+βα−β

= α /β+1α /β−1 =

− 3+1− 3−1

Constraintfromy(0)=0

Ontheotherhand,usingtheboundaryconditionatx=1,weobtain

AMS212BPerturbationMethods

- 4 -

y(1)=0, (T1+)|x=1=7/15

==>a⋅cos λ 715

⎛⎝⎜

⎞⎠⎟+b ⋅sin λ 715

⎛⎝⎜

⎞⎠⎟=0

==>ab= − tan 7

15λ⎛⎝⎜

⎞⎠⎟ Constraintfromy(1)=0

Combiningthetwoconstraintsona/bfromtwoboundaryconditions,wearriveat

tan λ 715

⎛⎝⎜

⎞⎠⎟= 1− 31+ 3

==>

715λ = tan

−1 1− 31+ 3

⎝⎜

⎠⎟ +nπ

==>λ = 157 tan−1 1− 3

1+ 3⎛

⎝⎜

⎠⎟ +nπ

⎣⎢⎢

⎦⎥⎥

Largeeigenvaluesare

λn ≈

157 tan−1 1− 3

1+ 3⎛

⎝⎜

⎠⎟ +nπ

⎣⎢⎢

⎦⎥⎥, n:integer, n→∞

Amoregeneralcaseofturningpoint:

′′y + λ2x g x( )+λh x( )( ) y =0 , g 0( ) =1 Goal: FindWKBapproximationsforx>0andx<0,findinnersolution,andmatchthem.

PartB: Findthesolutionnearx=0

Nearx=0,wedoscalingu=–λαx, α=2/3.

Theequationbecomes

λ2α d

2 ydu2

+ λ2 −λ−αu( )g −λ−αu( )+λh −λ−αu( )⎡⎣

⎤⎦ y =0

==>d2 ydu2

+ −λ2−3αu⋅ g −λ−αu( )+λ1−2αh −λ−αu( )⎡⎣

⎤⎦ y u( ) =0

==>d2 ydu2

+ −u+O λ−1/3( )⎡⎣

⎤⎦ y u( ) =0

AMS212BPerturbationMethods

- 5 -

Theleadingtermequationisthesameasinthespecialcase:d2 ydu2

−u y u( ) =0 .Thus,the(leadingterm)innersolutionnearx=0isunaffectedbythetermλh(x)y.

yinn( ) x( ) =αAi u( )+βBi u( ) , u= −λ

23x

PartA: FindtheWKBexpansionsforx>0andx<0.

Thedifferentialequationis

′′y + λ2x g x( )+λh x( )( ) y =0 , g 0( ) =1

Lety x( ) = exp δn λ( )φn x( )

n=0

∑⎛⎝⎜

⎠⎟

Substitutingintoequationyields

δn λ( )φn′′ x( )

n=0

∑ + δn λ( )φn′ x( )n=0

∑⎛⎝⎜

⎠⎟

2

= −λ2x g x( )−λh x( )

Calculatingϕ0(x):

δ0(λ)=λ

δ0 λ( )⎡⎣ ⎤⎦2

′φ0 x( )⎡⎣ ⎤⎦2= −λ2x g x( )

′φ0 x( )⎡⎣ ⎤⎦2= −x g x( )

φ0′ x( ) = ±i x g x( )

φ0 x( ) = ±i s g s( )ds

0

x

Thatis,ϕ0(x)isunaffectedbythepresenceofλh(x)y.

Calculatingϕ1(x):

δ1(λ)=1

2λδ1 λ( ) ′φ0 x( ) ′φ1 x( ) = λ −h x( )− ′′φ0 x( )⎡⎣ ⎤⎦

2 ′φ0 x( ) ′φ1 x( ) = −h x( )− ′′φ0 x( )

′φ1 x( ) = −h x( )

2 ′φ0 x( ) −′′φ0 x( )

2 ′φ0 x( ) = ±ih x( )

2 x g x( )− 12 log ′φ0 x( )( )′

AMS212BPerturbationMethods

- 6 -

φ1 x( ) = ±i

h s( )2 s g s( )

ds0

x

∫ − 14 log x g x( )

PartC: Matching

Weconsidertheregionofx =O λ−12( )→0 .

h s( )2 s g s( )

ds0

x

∫ = 121s⋅h s( )g s( )

ds0

x

∫ = 121sh 0( )+O s( )( )ds

0

x

= h 0( ) x +O x32( ) =O λ

−14( ) ==>

φ1 x( ) = −14 log x g x( ) +O λ

−14( ) Thatis,intheregionofx=O(λ-1/2)→0,y(WKB)(x)isunaffectedbythetermλh(x)y.

Therefore,thematchingrelationsareunaffectedbythepresenceofλh(x)y.

a= 1π λ1/6

α+β

2⎛⎝⎜

⎞⎠⎟

b= 1π λ1/6

α−β

2⎛⎝⎜

⎞⎠⎟

⎪⎪

⎪⎪

c = 1π λ1/6

β

d = 1π λ1/6

α2

⎪⎪

⎪⎪

a= 122d + c( )

b= 122d − c( )

⎪⎪

⎪⎪

Note: *) Theconnectionformulaisunaffectedbythetermλh(x)y.

*) Intherangeofx=O(1),y(WKB)(x)willbeaffectedbythetermλh(x)y

AMS212BPerturbationMethods

- 7 -

Asymptoticapproximationsofintegrals

exp λh t( )( ) f t( )dt

a

b

∫ , λ→ +∞

cos λh t( )( ) f t( )dt

a

b

∫ , λ→ +∞

sin λh t( )( ) f t( )dt

a

b

∫ , λ→ +∞

Westartwithe−λt f t( )dt

0

+∞

∫ , λ→ +∞

RegionofdominantcontributionExample:

I = e−λt cos πt( )dt

0

∫ , λ→ +∞

Sincee-λtdecaysveryfastforlargeλ,theregionofdominantcontributionisaverysmallregionneart=0.Soweonlyneedtoapproximatecos(πt)nearx=0.WeusetheTaylorexpansionofcos(πt)att=0

I = e−λt cos πt( )dt

0

∫ = e−λt 1− π2t2

2! + π4t 4

4! −!⎡

⎣⎢

⎦⎥dt

0

Tofinishtheexample,weneedtocalculatetα e−λt dt

0

∫ .

Weusechangeofvariable: s=λt, t=s/λ, dt=ds/λ

tα e−λt dt

0

∫ = 1λα s

α e−s 1λds

0

∫ = 1λα+1 sα e−s ds

0

∫ =Γ α+1( )λα+1

wheretheGammafunctionisdefinedas

Γ z( )≡ x z−1 e−x dx

0

Weobtainaveryusefulformula

AMS212BPerturbationMethods

- 8 -

tα e−λt dt

0

∫ =Γ α+1( )λα+1

Propertiesofthe Gammafunction

• Γ(1)=1

• Γ(α+1)=αΓ(α)

• Γ(n+1)=n! n=integer

• Γ 12

⎛⎝⎜

⎞⎠⎟= π

ThelastpropertycanbederivedusingtheprobabilitydensityoftheGaussiandistribution

Derivation:

Γ 12

⎛⎝⎜

⎞⎠⎟= 1

se−s ds

0

Changeofvariables=u2

=2 e−u2du

0

∫ = 2πσ2 12πσ2

exp −u2

2σ2⎛

⎝⎜⎞

⎠⎟du

−∞

∫2σ2=1

= π

Backtoourexample…

Applyingtheformulatoourexample,wehave

I = e−λt 1− π2t2

2! + π4t 4

4! −!⎡

⎣⎢

⎦⎥dt

0

∫ =Γ 1( )λ

− π2

2!Γ 3( )λ3

+ π4

4!Γ 5( )λ5

−!

= 1λ−π2 1

λ3+π4 1

λ5−!

Integrale−λt f t( )dt

0

∫ canbetreatedinasimilarway.

Nowweconsideraslightlymoregeneralcase:

e−λt f t( )dt

a

b

∫ wherea≠0and/orb≠+∞.

Theexamplebelowshowshowtodealwiththesituationwherethelowerintegrationlimitisnot0andtheupperintegrationlimitisnotinfinity.

AMS212BPerturbationMethods

- 9 -

Example:

I = e−λt 1

1+t3dt

1

3

∫ , λ→ +∞

First,weusechangeofvariabletoshiftthelowerlimitofintegrationtozero: s=t–1, t=s+1, dt=ds

I = e−λt 1

1+t3dt

1

3

∫ = e−λ 1+s( ) 11+ 1+ s( )3

ds0

2

∫ = e−λ e−λs 11+ 1+ s( )3

ds0

2

Next,wedealwiththeupperlimitofintegration

I = e−λ e−λs 11+ 1+ s( )3

ds0

2

∫ = e−λ e−λs 11+ 1+ s( )3

ds0

I1! "### $###

− e−λs 11+ 1+ s( )3

ds2

I2! "### $###

⎢⎢⎢⎢

⎥⎥⎥⎥

Claim: I2=T.S.T.

T.S.T.standsfor“TranscendentallySmallTerm”,whichmeansitisasymptoticallysmallerthananypowersof1/λ.

Derivation:

Weusechangeofvariable:

u=s–2, s=u+2

I2 = e−λs 1

1+ 1+ s( )3ds

2

∫ = e−λ u+2( ) 11+ u+3( )3

du0

∫ = e−2λ e−λu 11+ u+3( )3

du0

=T.S.T.

Sincewearegoingtohaveapowerseriesof1/λintheexpansionofI1,wedonotneedtokeepanyT.S.T.term.

Summary: Ingeneral,wehave

e−λt f t( )dt

0

b

∫ = e−λt f t( )dt0

∫ + T.S.T, λ→ +∞

Backtoourexample…

TocalculateI1,weexpand

AMS212BPerturbationMethods

- 10 -

11+ 1+ s( )3

= 12+3s +3s2 +!

= 12

1

1+ 32 s +32 s

2 +!⎛⎝⎜

⎞⎠⎟

1/2

= 1

21− 12

32 s +

32 s

2⎛⎝⎜

⎞⎠⎟+ 38

32 s

⎛⎝⎜

⎞⎠⎟

2

+!⎛

⎝⎜⎜

⎠⎟⎟= 1

21− 34 s +

332 s

2 +!⎛⎝⎜

⎞⎠⎟

Thus,wehave

I~e−λ I1 = e−λ e−λs 1

21− 34 s +

332 s

2 +!⎛⎝⎜

⎞⎠⎟ds

0

= e

−λ

2Γ 1( )λ

− 34Γ 2( )λ2

+ 332

Γ 3( )λ3

+O 1λ3

⎛⎝⎜

⎞⎠⎟

⎣⎢⎢

⎦⎥⎥

= e

−λ

21λ− 34λ2 +

316λ3 +O

1λ3

⎛⎝⎜

⎞⎠⎟

⎣⎢

⎦⎥

Example: (Skipthisexampleinlecture)

I = e−λt t2 1+t dt

0

4

∫ ~ e−λt t2 1+t dt0

= e−λt t2 1+ 12t −

18t

2 +!⎛⎝⎜

⎞⎠⎟dt

0

∫ =Γ 3( )λ3

+ 12Γ 4( )λ4

− 18Γ 5( )λ5

+!

= 2λ3

+ 3λ4

− 3λ5

+!

Example(non-integerpower):

I = e−λt 1

t11+t dt0

∫ , λ→ +∞

= e−λt 1

t1−t +t2 −!⎡⎣ ⎤⎦dt

0

∫ = e−λt t −12 −t

12 +t

32 −!

⎣⎢

⎦⎥dt

0

=Γ 1/2( )λ1/2

−Γ 3/2( )λ3/2

+Γ 5/2( )λ5/2

−!= πλ1/2

− 12π

λ3/2+ 34

πλ5/2

−!

Herewehaveused

AMS212BPerturbationMethods

- 11 -

Γ 12

⎛⎝⎜

⎞⎠⎟= π

Γ 32

⎛⎝⎜

⎞⎠⎟= 12Γ

12

⎛⎝⎜

⎞⎠⎟= 12 π

Γ 52

⎛⎝⎜

⎞⎠⎟= 32Γ

32

⎛⎝⎜

⎞⎠⎟= 34 π

Example: (Skipthisexampleinlecture)

I = e−λt 1

tlog 1+t2( )dt

0

4

∫ ~ e−λt 1tlog 1+t2( )dt

0

= e−λt 1

tt2 − t

4

2 + t6

3 −!⎛

⎝⎜⎞

⎠⎟dt

0

∫ =Γ 5/2( )λ5/2

− 12Γ 9/2( )λ9/2

+ 13Γ 13/2( )λ13/2

−!

Γ 52

⎛⎝⎜

⎞⎠⎟= 32 ⋅

12 ⋅Γ

12

⎛⎝⎜

⎞⎠⎟= 34 π

Γ 92

⎛⎝⎜

⎞⎠⎟= 72 ⋅

52 ⋅Γ

52

⎛⎝⎜

⎞⎠⎟= 10516 π

Γ 13

2⎛⎝⎜

⎞⎠⎟= 112 ⋅92 ⋅Γ

92

⎛⎝⎜

⎞⎠⎟= 1039564 π

Nowwesummarizetheprocedurediscussedaboveasalemma.

Watson’slemma:Considertheintegral

I λ( ) = e−λt tαg t( )dt

0

T

Suppose

1) α>−1

2)g t( ) ≤Kect

Thenwehave

AMS212BPerturbationMethods

- 12 -

I λ( )~ g n( ) 0( )

n!Γ α+n+1( )

λα+n+1n=0

N

Note: Condition1)istomakesurethattheintegralisconvergentatt=0.

Condition2)istomakesurethatfort>0,g(t)isdominatedbye–λtsothatforlargeλtheregionofdominantcontributionisasmallregionneart=0.

Proof:

I λ( ) = e−λt tαg t( )dt

0

T

∫ ~ e−λt tαg t( )dt0

∫ ~ e−λt tαg n( ) 0( )n! t n

n=0

N

∑⎛

⎝⎜⎜

⎠⎟⎟dt

0

=

g n( ) 0( )n! e−λt tα+n dt

0

∫n=0

N

∑ +!=g n( ) 0( )n!

Γ α+n+1( )λα+n+1

n=0

N

Relaxingtheconditionα>−1.

Supposeg(0)=⋯=g(k-1)(0)=0butg(k)(0)≠0.Thenαisrestrictedbyα+k>–1.

Example:

I = e−λt 1

t2 tlog 1+t2( )dt

0

4

∫ ~ e−λt 1t2 t

log 1+t2( )dt0

= e−λt 1

t2 tt2 − t

4

2 + t6

3 −!⎛

⎝⎜⎞

⎠⎟dt

0

∫ = e−λt t −1/2 − 12t3/2 + 13t

7/2 −!⎛⎝⎜

⎞⎠⎟dt

0

=Γ 1/2( )λ1/2

− 12Γ 5/2( )λ5/2

+ 13Γ 9/2( )λ9/2

−!