[Advances in Organometallic Chemistry] Advances in Organometallic Chemistry Volume 60 Volume 60 ||...

44
CHAPTER TWO Supramolecular Self-assembly of Transition Metal Carbonyl Molecules Through MCO(Lone Pair)...p(Arene) Interactions Julio Zukerman-Schpector a, , Ionel Haiduc b, , Edward R.T. Tiekink c, a Laborato ´rio de Cristalografia, Estereodina ˆmica e Modelagem Molecular, Departamento de Quı ´mica, Universidade Federal de Sa ˜o Carlos, Sa ˜o Carlos, SP, Brazil b Facultatea de Chimie, Universitatea Babes-Bolyai, Cluj-Napoca, Romania c Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia Corresponding authors: e-mail address: [email protected]; [email protected]; [email protected] Contents 1. Introduction 50 2. Data Mining 53 3. Supramolecular Aggregation Based on MCO(Lone Pair)...p(Arene) Interactions 54 3.1 Motif A 54 3.2 Motif B 56 3.3 Motif C 61 3.4 Motif D 65 3.5 Motifs E, F, and G 67 3.6 Motifs H and I 76 3.7 Motif J 79 3.8 Motif K 80 4. Thio- and Selenocarbonyl Analogues 81 5. Strength and Correlations 82 6. Conclusions and Outlook 83 Acknowledgments 83 References 84 Advances in Organometallic Chemistry, Volume 60 # 2012 Elsevier Inc. ISSN 0065-3055 All rights reserved. http://dx.doi.org/10.1016/B978-0-12-396970-5.00002-5 49

Transcript of [Advances in Organometallic Chemistry] Advances in Organometallic Chemistry Volume 60 Volume 60 ||...

CHAPTER TWO

Supramolecular Self-assemblyof Transition Metal CarbonylMolecules Through M–CO(LonePair). . .p(Arene) InteractionsJulio Zukerman-Schpectora,�, Ionel Haiducb,�, Edward R.T. Tiekinkc,�aLaboratorio de Cristalografia, Estereodinamica e Modelagem Molecular, Departamento de Quımica,Universidade Federal de Sao Carlos, Sao Carlos, SP, BrazilbFacultatea de Chimie, Universitatea Babes-Bolyai, Cluj-Napoca, RomaniacDepartment of Chemistry, University of Malaya, Kuala Lumpur, Malaysia�Corresponding authors: e-mail address: [email protected]; [email protected];[email protected]

Contents

1.

AdvISShttp

Introduction

ances in Organometallic Chemistry, Volume 60 # 2012 Elsevier Inc.N 0065-3055 All rights reserved.://dx.doi.org/10.1016/B978-0-12-396970-5.00002-5

50

2. Data Mining 53 3. Supramolecular Aggregation Based on M–CO(Lone Pair). . .p(Arene) Interactions 54

3.1

Motif A 54 3.2 Motif B 56 3.3 Motif C 61 3.4 Motif D 65 3.5 Motifs E, F, and G 67 3.6 Motifs H and I 76 3.7 Motif J 79 3.8 Motif K 80

4.

Thio- and Selenocarbonyl Analogues 81 5. Strength and Correlations 82 6. Conclusions and Outlook 83 Acknowledgments 83 References 84

49

50 Julio Zukerman-Schpector et al.

1. INTRODUCTION

Classical organometallic chemistry concentrates largely on molecular

structure. Until recently, the chemists working in the field were satisfied

with establishing the structure of their molecules, particularly when this

was possible with the aid of single crystal X-ray diffraction, which was often

considered the ultimate proof. The phenomenal progress of chemical crys-

tallography made possible rather precise determination of the arrangements

of molecules in the crystal (crystal packing) and frequently revealed architec-

tures determined by intermolecular forces, weaker than covalent bonds, but

strong enough to maintain the molecules associated into organized struc-

tures. This has been known for quite some time in organic chemistry, where

intermolecular association through hydrogen bonds has traditionally been

well documented. The extended study of intermolecular association gave

birth to supramolecular chemistry, which has become a field of intense de-

velopment in the last few decades.

Supramolecular chemistry is the discipline covering “the chemistry of

molecular assemblies and of the intermolecular bond” and deals with

“organized entities that result from the association of two or more chemical

species held together by intermolecular forces.” It operates with two types of

“objects”: supermolecules, that is, “well-defined oligomolecular species that

result from the intermolecular association of a few components,” and mo-

lecular assemblies or supramolecular arrays, which are “polymolecular systems

that result from the spontaneous association of a non-defined number of

components.”1

There is a broad variety of noncovalent intermolecular forces2 able to

hold together the molecular building units (also called “tectons”) in a crystal

and even in solution, leading to supramolecular association.3 Examples of

such noncovalent interactions include hydrogen bonds,4 dative coordinate

bonds,5 p–p stacking,6 secondary bonds (“soft–soft” interactions)7 or

cation–p interactions,8 and other types of less well-defined interactions

(electrostatic forces, etc.). The supramolecular structures are formed spon-

taneously, and the process is known as self-assembly.

In recent years, some new synthons which can act as intermolecular

bonding motifs for the formation of supramolecular structures have

emerged. These include anion. . .p(arene) interactions,9 cation. . .p(arene)interactions (alkali metals),10 nonmetal lone pair. . .p(arene) interactions,11

C–H. . .p(arene) interactions,12 and C–H. . .p(chelate ring) interactions in

51M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

metal complexes.13 It has been shown that metal and semi-metal lone pair. . .p(arene) interactions occur in arenederivativesofmain groupelements in low

oxidation states, and that these lead to well-defined supramolecular

architectures. Thus, bibliographic surveys have appeared, describing supra-

molecular structures based on lone pair. . .p(arene) interactions for, in chro-nological order, tellurium(II) and tellurium(IV),14 tin(II),15 lead(II),16 arsenic

(III)17, and selenium(II) and selenium(IV).18 Metal. . .p(arene) interactionswere also reported in gold(I) and gold(III) compounds,19 and anion andmet-

al. . .p(heteroaromatic ring) interactions in both light-20 and heavy-21 atom

crystal structures. As described in the original surveys,many of these synthons

stabilize a range of supramolecular architectures of varying dimensionalities.

The general concepts of supramolecular chemistry obviously apply to

organometallic chemistry as well, generating the discipline of supramolecu-

lar organometallic chemistry.22 Naturally, all of the aforementioned inter-

molecular noncovalent forces can be encountered in organometallic

compounds. Over and above these, organometallic compounds afford some

specific interactions.

A bonding motif specific to “organometallic chemistry” includes bonds

between metals and unsaturated organic molecules, that is, metal–p interac-

tions. Cyclopentadienyl–metal p complexes (e.g., metallocenes and related

compounds) are typical for transition metals but some main group deriva-

tives are also known.23 When acting intermolecularly, as a bonding motif

for supramolecular self-assembly, the metal. . .p-cyclopentadienyl bonds

can be observed in the structures of bis(cyclopentadienyl)lead(II) or

“plumbocene,” [Pb(Z5-C5H5)2]n (n¼6 or 1), which forms both cyclic

hexameric supermolecules and helical supramolecular chains,24 or with

the supramolecular structures of [(Z5-C5Me5)SbCl2]n.25 In both types of

compound, the metal atoms alternate with five-membered cyclopentadienyl

rings, that is, . . .M. . .(p-Cp). . .M. . .(p-Cp). . .. These metal–p bonds are

weaker than comparable bonds in transition metal cyclopentadienyls, as

illustrated by longer interatomic distances from the metal to the C5 ring

centroid: Pb. . .centroid(Cp) (2.59–3.54 A) and Sb. . .centroid(Cp)(3.41–3.58 A),26 compared to 1.90–2.70 A, which is the normal range of

metal–centroid distances in metallocenes.

Benzene rings form numerous Z6-aryl metal complexes with transition

metals, for example, dibenzene-chromium Cr(C6H6)2 and benzene-

chromium tricarbonyl C6H5Cr(CO)3, and are formed by contribution of

the p-electrons from the organic molecule into the empty d-orbitals of

the metal, with the aim of achieving a noble gas configuration.

52 Julio Zukerman-Schpector et al.

We are interested in exploring the presence and implications of metal

(lone pair). . .p(arene) interactions as bonding motifs for supramolecular

self-assembly.14–19,21 Such structures can be identified by data mining of

the Cambridge Crystallographic Database27 by checking for short contacts

between the metal atoms and the aromatic rings. It should be underscored

that in the published works analyzed here, the authors (with very few

exceptions) have established only the molecular structure and did not

examine the packing of the molecules in the crystal. Thus, the

supramolecular self-assembly was often overlooked.

As a continuation of this interest, an examination of structures containing

metal carbonyl moieties and arene groups, as recorded in the Cambridge

Crystallographic Database,27 has been undertaken to evaluate the propensity

of M–CO(lone pair)....p(arene) interactions and, when formed, the nature

of the resulting supramolecular architecture based on these. Only M–CO

(lone pair). . .p(arene) interactions operating in isolation from other supra-

molecular synthons are discussed in the following, with no attempt to give a

full discussion of the complete crystal packing in three dimensions.

This workwas prompted by the knowledge that a lone pair of the oxygen-

containing sites of various (macro)molecules is able to interact with the arenes

(or aryl groups). Thus, very precise X-ray structure analyses showed that the

oxygen lone pair of a water molecule interacts with the cytosine base site in

DNA.28 Further, in 286 protein structures out of the 500 investigated,

carbonyl oxygen atoms were close, within a distance of 3.5 A, to aromatic

centers, suggesting a stronger interaction than a van der Waals contact.29

The oxygen(lone pair). . .p(arene) interaction has been discussed in some

detail30 and examples cited, indicating that the oxygen atoms providing the

lone pair in such interactions can be present in water,28,31 ether,32 or carbonyl

moieties.33 In a quantitative theoretical study of interactions between oxygen

(lone pair) and aromatic rings, it was demonstrated that even electron-rich

aromatic rings and oxygen lone pairs exhibit attractive interactions.34

This information suggested that transition metal carbonyl compounds,

containing arene groups in their structures, could be interesting candidates

for oxygen(lone pair). . .p(arene) interactions. The M–CO moiety is linear

and the lone pair at the oxygen is favorably oriented to point perpendicularly

to the centroid of an aromatic ring. The bonding between transition metal

centers and carbon monoxide is well understood,35 but the potential supra-

molecular interactions involving metal-bound carbonyl ligands have not

been explored in detail so far. Here, we discuss supramolecular aggregation

patterns based on M–CO(lone pair). . .p(arene) interactions. A preliminary

report of this work was published recently.36

53M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

2. DATA MINING

A search of the Cambridge Crystallographic Database (CSD version

5.32 and three updates)27a using the data interrogation program CON-

QUEST was undertaken.27b The details of the search conducted are shown

in Fig. 2.1. Three geometric parameters were employed, that is, a distance d

(the distance between the centroid of the arene ring (Cg) and the O center),

an angle a (defined by the vector perpendicular to the arene ring (V1) and the

vector passing from the O atom to the centroid of the arene ring), and a sec-

ond angle b (the C–O. . .Cg angle). The distance restriction was d�3.8 A, a

distance based on the sum of the half-thickness of an arene ring (half the

centroid. . .centroid distance in parallel phenyl rings¼1.7–1.9 A)37 and

the van der Waals radius of O, taken as 1.52 A,38 plus 10% to ensure that

all potential “hits” were investigated. To ensure the O(lone pair) was di-

rected toward the center of the ring, rather than to the periphery, a was

�20�. Finally, bwas restricted to lie in the range 160–180� in order to focusupon terminally bound carbonyls rather than (semi)bridging carbonyls.

A total of 17,540 metal carbonyl structures have been deposited in the

CSD.27 After excluding duplicates, structures flagged with errors, and those

with disorder, approximately 100 structures satisfied the search criteria and

were manually evaluated (using crystallographic software ORTEP,39a

DIAMOND39b, and PLATON39c) for the presence of M–CO(lone

pair). . .p(arene) interactions in isolation of other supramolecular synthons

operating in the same dimension(s). A total of 85 structures satisfied the

Cg

O

d

b

a

C

[M]

V1

V2

Figure 2.1 Diagram illustrating the search protocol to determine the presence of pu-tative M–CO(lone pair). . .p(arene) interactions. The parameter d is the distance betweenthe ring centroid of the arene ring (Cg) and the O atom (corresponding to vector, V2).V1 is the vector normal to the plane through the arene ring. a is the angle between theV1 and V2 vectors. b is the C–O. . .Cg angle.

54 Julio Zukerman-Schpector et al.

above search criteria and so feature supramolecular synthons based on

M–CO(lone pair). . .p(arene) interactions. Details of the supramolecular ar-

chitectures sustained by these are given below.

3. SUPRAMOLECULAR AGGREGATION BASED ON M–CO(LONE PAIR). . .p(ARENE) INTERACTIONS

The 85 structures deemed to feature M–CO(lone pair). . .p(arene)interactions lead to 11 supramolecular motifs (A–K), as detailed below.

Four of the motifs (A–D) are zero-dimensional, the majority (E–L) are

one-dimensional, and there is a sole example of a three-dimensional archi-

tecture (motif K) sustained by M–CO(lone pair). . .p(arene) interactions.Geometric data characterizing these interactions are given in the tables.

For each motif, entries are arranged in increasing order of d. Chemical

diagrams are given for each structure, conforming to a specific supramo-

lecular motif; only interacting species are included so that additional

species, typically solvent, are omitted. Normally, only one example of each

motif is illustrated. Diagrams are original and were generated using DIA-

MOND39b with arbitrary spheres; hydrogen atoms, except for hydrides

and acidic hydrogens, have been omitted.

3.1. Motif AMotif A is a zero-dimensional, two-molecule aggregate whereby two like

molecules are connected via a single M–CO(lone pair). . .p(arene) interac-tion. A total of four structures, 1–4,40–43 adopt this motif. Geometric data

are collected in Table 2.1. The common feature of these crystal structures is

that there are multiple molecules in the crystallographic asymmetric unit

and that these are connected by a single M–CO(lone pair). . .p(arene)interaction. A representative aggregate is shown for 443 in Fig. 2.2.

Even from this small sub set, an enormous structural diversity in the

structures featuring a M–CO(lone pair). . .p(arene) interaction is apparent,

Table 2.1 Geometric data characterizing M–CO(lone pair). . .p(arene) interactions inzero-dimensional motif A: two-molecule aggregate sustained by a single interactionCompound/Reference d (Å) a (�) b (�) Metal

1 (40) 3.26 9.9 173.5 Co

2 (41) 3.35 7.1 163.2 Fe

3 (42) 3.45 0.6 162.5 Os

4 (43) 3.52 7.6 161.2 Mo

O

OO

O O

O

OO

P

P

Mo

Figure 2.2 An exemplar of zero-dimensional motif A: a two-molecule aggregate in 443

sustained by a single M–CO(lone pair). . .p(arene) interaction.

55M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

that is, fourdifferentmetals,mono-, tri-, andtetra-nuclear species, andnumbers

of carbonyls ranging from 4 to 12. Similar comments pertain to an even greater

extent in motifs with more numerous representatives.

56 Julio Zukerman-Schpector et al.

3.2. Motif BMotif B describes zero-dimensional two-molecule aggregates connected

by a pair of M–CO(lone pair). . .p(arene) interactions. A total of 22 struc-

tures, 5–26,44–65 feature this motif and geometric parameters

characterizing these interactions are collated in Table 2.2. A common

Table 2.2 Geometric data characterizing M–CO(lone pair). . .p(arene) interactions inzero-dimensional motif B: two-molecule aggregate sustained by two interactionsCompound/Reference d (Å) a (�) b (�) Metal

5 (44) 2.94 4.3 165.1 Ru

6 (45) 3.12 6.9 160.3 Mo

7 (46) 3.25 6.1 161.2 Ir

8 (47) 3.26 5.4 160.0 Rh

9 (48) 3.27 3.3 169.3 Ru

10 (49) 3.28 6.9 176.0 Fe

11 (50) 3.30 6.5 161.8 Re

12 (51) 3.32 2.9 161.9 Fe

13 (52) 3.35 5.0 166.7 W

14 (53) 3.37 8.3 174.5 Ru

15 (54) 3.40 8.5 168.2 Ru

16 (55) 3.42 0.3 172.8 Cr

17 (56) 3.50 7.4 167.7 Fe

18 (57) 3.51 9.5 164.9 Ir

19 (58) 3.52 1.6 174.1 Os

20 (59) 3.55 5.9 168.1 Ru

21 (60) 3.57 3.9 162.1 Fe

22 (61) 3.60 8.5 174.5 Fe

23 (62) 3.65 9.5 162.7 Re

24 (63) 3.70 8.2 168.3 Fe

25 (64) 3.75 6.2 161.2 Fe

26 (65) 3.36 5.5 179.3 Fe

57M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

feature of the structures adopting motif B is the presence of symmetry

within the two-molecule aggregates. In all but one example, the

molecules are connected over a center of inversion. A representative

structure, that is, 1958, is shown in Fig. 2.3A. The odd structure is that

of 2665 where the molecules are related by a twofold rotation axis; this

is illustrated in Fig. 2.3B.

O

OO

O

O

O

O

O

O

O

Fe

Fe

O

O

O O

P

A

B

P

P

Os

Os OsSi

Figure 2.3 Exemplars of zero-dimensional motif B: a two-molecule aggregate issustained by two M–CO(lone pair). . .p(arene) interactions: (A) centrosymmetric 1958

and (B) 26,65 where the dimeric aggregate has twofold symmetry.

58 Julio Zukerman-Schpector et al.

59M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

60 Julio Zukerman-Schpector et al.

61M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

3.3. Motif CMotif C is closely related to motif A in that two species are connected by a

single M–CO(lone pair). . .p(arene) interaction. The difference occurs in

that for motif A, the molecules are the same whereas for motif C, the inter-

acting molecules are distinct. In fact, only ionic species adopt motif C

62 Julio Zukerman-Schpector et al.

comprising [Ph4P]þ (2 examples) or [Ph3P¼¼N¼¼PPh3]

þ (10 examples)

cations with carbonyl-containing anions, 27–3866–77; geometric data are

listed in Table 2.3. Therefore, each M–CO(lone pair). . .p(arene)interaction involves an anion-bound carbonyl connected to a cation-

bound phenyl group as exemplified in Fig. 2.4 for 38.77

Ir Ru

RuRu

N PPh3PPh3 Ph3PPh3P

PPh3Ph3P

PPh3Ph3PPPh3Ph3P

PPh3Ph3P

+

CO

(27)

(32)(31)

(30)(29)

(28)

CO

COCOOC

Ph

OC

OC

OC

OC CO

CO_

Co Fe

OC

CO

COCO

OC

OC CO

CO_

N+

Fe Fe

OC

COOC

OC CO

CO_

N+

OC

CO

HCr Cr

HS

COOC

OC CO

CO_

N+

OC

CO OC

Fe

Fe

Fe

CO

CO

OC

OC COO

CO

COMe

COOC

OC

N+

_W Re

CO

COCO

OC

OC CO

CO_

N+

CO

CO

CO CO

63M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

Fe Fe

Fe

Fe

Hg

COOC

CO

COCOOC

OC

OC

OC

CO

CO

COOC

_

Fe Fe

Fe

Te Te

OC CO

IOC

CO

CO

CO

OC

OC

OC

_

+

Ru Ru

RuRu

Ru

Ru

Br

C C

COOC

COCO

OC

OC

OC CO

COOC

COOC CO

CO_

N P(p-tol)3P(lot-p)3

+

Ni Ru

Ru

H

OC CO

COOC

CO

CO

_

RuCC

C

C

COOC

Fe

Fe

Bi Bi

Fe

Fe

CO

CO

CO

COFe

CO

CO

OC

OC

COCOOC

OCOC CO

COOC CO

N+

Mo

N

N

OC

OC

S

SN

Et

Et

O

N

N

N+

N+

+

_

OO

OO

O

O

Ph3P PPh3

2 [PPh3 PPh3]Ph3P PPh3

PPh4

PPh4

(38)

(37)

(36)

(35)

(34)

(33)

S

S

O

O

P

P

N

O

N

N

NNN

Mo

Figure 2.4 Exemplar of zero-dimensional motif C: a two-molecule aggregate in 3877

sustained by a M–CO(lone pair). . .p(arene) interaction occurring between dissimilarspecies.

Table 2.3 Geometric data characterizing M–CO(lone pair). . .p(arene) interactions inzero-dimensional motif C: two-molecule aggregate sustained by a single interactionbetween dissimilar speciesCompound/Reference d (Å) a (�) b (�) Metal

27 (66) 3.13 9.8 171.4 Ru

28 (67) 3.21 2.4 165.8 Fe

29 (68) 3.42 2.4 161.9 Fe

30 (69) 3.47 8.2 169.4 Cr

31 (70) 3.50 5.0 168.3 Fe

32 (71) 3.55 7.0 168.3 W

33 (72) 3.66 7.2 163.1 Fe

34 (73) 3.58 2.6 167.9 Fe

35 (74) 3.66 8.8 164.5 Ru

36 (75) 3.73 7.6 167.3 Ru

37 (76) 3.77 6.6 161.6 Fe

38 (77) 3.80 5.6 173.6 Mo

64 Julio Zukerman-Schpector et al.

65M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

3.4. Motif DMotifD represents the final variation on zero-dimensional aggregates based

on M–CO(lone pair). . .p(arene) interactions and features a three-molecule

aggregate sustained by two such interactions. Eight examples, 39–46,78–84

adopt this motif and geometric parameters describing these are collected

in Table 2.4. While the common feature of all structures is that they are

ionic, seven resemble motif C in that a carbonyl-bearing cation interacts

with two phenyl groups derived from two [Ph4P]þ cations; each three-

molecule aggregate is centrosymmetric; 4078 is illustrated in Fig. 2.5(A).

The odd structure adopting this motif is that of 46,84 as illustrated in

Fig. 2.5(B); the species has twofold symmetry. Here, two phenyl groups

of a complex dication function as acceptors for two M–CO(lone

pair). . .p(arene) interactions where each carbonyl is part of a rhodium-

containing anion.

66 Julio Zukerman-Schpector et al.

Table 2.4 Geometric data characterizing M–CO(lone pair). . .p(arene) interactions inzero-dimensional motif D: three-molecule aggregate sustained by two interactionsbetween dissimilar speciesCompound/Reference d (Å) a (�) b (�) Metal

39 (78) 2.97 2.0 166.1 W

40 (78) 3.05 3.4 163.9 Cr

41 (79) 3.20 8.8 164.9 Re

42 (80) 3.35 4.7 165.2 Fe

43 (81) 3.36 9.9 163.0 Fe

44 (82) 3.46 1.8 162.4 Fe

45 (83) 3.49 9.6 163.5 Mo

46 (84) 3.22 5.8 172.5 Rh

O

O

O

OO

O O

O

O

O

P

A

B

Rh

S

N

O

ORh Cl

ClN

OO

Cr

Cr

Sn

Figure 2.5 Exemplars of zero-dimensional motif D: a three molecule aggregatesustained by two M-CO(lone pair). . .p(arene) interactions occurring between dissimilarspecies in (A) 4078 having a center of symmetry, and (B) 4684 having twofold symmetry.

67M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

3.5. Motifs E, F, and GMotif E is the most numerous and first of five motifs that adopt one-

dimensional aggregation patterns. A total of 20 structures, 47–66,85–103

form linear supramolecular chains sustained by an average of one M–CO

(lone pair). . .p(arene) interaction per molecule, that is, forming one

acceptor and donor contact; see Table 2.5 for geometric parameters.

Motif E is exemplified by 5795 in Fig. 2.6. The structure of 4785 is

notable in that the Os–CO(lone pair). . .p(arene) interaction distance of

2.89 A is the shortest of the structures surveyed herein.

68 Julio Zukerman-Schpector et al.

69M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

70 Julio Zukerman-Schpector et al.

Table 2.5 Geometric data characterizing M–CO(lone pair). . .p(arene) interactions inone-dimensional motif E: linear chain sustained by a single interactionCompound/Reference d (Å) a (�) b (�) Metal

47 (85) 2.89 7.7 173.9 Os

48 (86) 3.09 1.5 171.7 Fe

49 (87) 3.15 7.6 166.6 Os

O O

OO

OO

O

O P

P MnMn

Au

Figure 2.6 Exemplar of one-dimensional motif E: linear supramolecular chain in 5795

sustained by one M–CO(lone pair). . .p(arene) interaction per molecule.

Table 2.5 Geometric data characterizing M–CO(lone pair). . .p(arene) interactions inone-dimensional motif E: linear chain sustained by a single interaction—cont'dCompound/Reference d (Å) a (�) b (�) Metal

50 (88) 3.16 7.8 167.1 Mo

51 (89) 3.17 7.8 173.3 Co

52 (90) 3.18 3.9 162.0 Ir

53 (91) 3.24 8.8 170.3 Os

54 (92) 3.26 5.9 164.5 Co

55 (93) 3.30 6.1 163.6 Os

56 (94) 3.33 7.8 163.5 Re

57 (95) 3.35 5.8 164.3 Mn

58 (96) 3.36 8.4 163.8 Re

59 (97) 3.43 3.6 179.2 Os

60 (98) 3.45 3.2 163.2 Re

61 (97) 3.46 3.5 179.5 Ru

62 (99) 3.47 6.4 169.7 Re

63 (100) 3.52 9.9 163.3 Ru

64 (101) 3.67 3.6 161.7 Ru

65 (102) 3.67 9.5 165.2 Ru

66 (103) 3.70 8.6 177.1 Cr

71M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

72 Julio Zukerman-Schpector et al.

Motif F is found in eight crystal structures, 67–74,104–111 and is again a

supramolecular chain like motif E but with a helical topology in which a

molecule participates in a single acceptor and single donor interaction.

Geometric data are summarized in Table 2.6, and a representative

example is shown in Fig. 2.7 for 71.108

73M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

Table 2.6 Geometric data characterizing M–CO(lone pair). . .p(arene) interactions inone-dimensional motif F: helical chain sustained by a single interactionCompound/Reference d (Å) a (�) b (�) Metal

67 (104) 3.10 7.1 174.8 Re

68 (105) 3.19 4.5 177.1 W

69 (106) 3.20 6.9 171.4 Ru

70 (107) 3.25 7.6 169.8 Fe

71 (108) 3.52 7.0 166.5 W

72 (109) 3.52 8.0 178.9 Ru

73 (110) 3.56 2.5 175.9 Ru

74 (111) 3.73 9.2 162.9 Os

O

O

O

O

O

W PP

O

Figure 2.7 Exemplar of one-dimensional motif F: helical supramolecular chain in 71108

sustained by one M–CO(lone pair). . .p(arene) interaction per molecule.

74 Julio Zukerman-Schpector et al.

MotifG, found in five crystal structures is, as for each of motifs E and F,

sustained by one acceptor and one donor M–CO(lone pair). . .p(arene) in-teraction per molecule leading to a supramolecular chain with a zigzag to-

pology. Structures 75–79112–116 adopt this motif. The geometric parameters

characterizing these are given in Table 2.7 and an example is illustrated in

Fig. 2.8 for 78.115

Ru Ru

PhPh

H

Ru

CO

CO

CO

OC

OC

OC

Pt Pt

Pt

Ru Ru

Ru

H

CO

COOC

COOC

OC

OC CO

CO

CO

COOC

OC CO

(75)

Ru

Ru

Ru

Ru

Ru

Ru

O OC

OC

O

COCO

O

CO

CO

CO

CO

OC

OC

OC

Pt

Pt

PtO

P

P

Ph2

Ph2

Ph2P PPh2

O

(77)

75M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

Ph2P

WH

W

PPh2

COOC

COOC

CO

CON

P(H)Ph2

O

(79)

FeFe

Ph2P

OC

OC

CO

CO

PPh2

(76)

S

Ph

Mn

Mn

SeSe

COCOOC

COOC CO

MnMn PP

OC CO

OC COOC CO

COOC

Ph

Ph

Ph

Ph

(78)

O

Table 2.7 Geometric data characterizing M–CO(lone pair). . .p(arene) interactions inone-dimensional motif G: zigzag chain sustained by a single interactionCompound/Reference d (Å) a (�) b (�) Metal

75 (112) 3.06 8.8 162.0 Ru

76 (113) 3.20 9.4 169.1 Fe

77 (114) 3.23 6.7 174.9 Ru

78 (115) 3.27 7.5 169.4 Mn

79 (116) 3.50 7.9 173.3 W

O

OO

O

OO

O OO

OO O

OO

O

P

P

Se

Se

MnMn

Mn

Mn

Figure 2.8 Exemplar of one-dimensional motif G: zigzag supramolecular chain in 78115

sustained by one M–CO(lone pair). . .p(arene) interaction per molecule.

76 Julio Zukerman-Schpector et al.

3.6. Motifs H and IMotif H is a linear supramolecular chain sustained by an average of two

M–CO(lone pair). . .p(arene) interactions per molecule, that is, each mole-

cule participates in two acceptor and two donor contacts. Three structures

adopt this motif, 80–82,117–119 and that of 80117 illustrated in Fig. 2.9.

Geometric data are listed in Table 2.8. Table 2.8 also contains geometric

data for 83,120 the sole example of a structure adopting motif I, a

supramolecular chain with a zigzag topology sustained by two M–CO

(lone pair). . .p(arene) interactions per molecule (Fig. 2.10).

77M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

Table 2.8 Geometric data characterizing M–CO(lone pair). . .p(arene) interactions inone-dimensional motif H: linear chain sustained by two interactions, and motif I: zigzagchain sustained by two interactionsCompound/Reference d (Å) a (�) b (�) Metal

Motif H

80 (117) 3.03 1.0 177.2 W

81 (118) 3.25 3.9 162.2 Cr

3.33 7.4 164.5 Cr

82 (119) 3.49 6.1 173.5 Re

Motif I

83 (120) 3.20 9.1 167.2 Os

O

O

O

FF

FF

F

F

N

N

N

W

F

F

F

F

FF

F

F

F

Figure 2.9 Exemplar of one-dimensional motif H: linear supramolecular chain in 80117

sustained by two M–CO(lone pair). . .p(arene) interactions per molecule.

78 Julio Zukerman-Schpector et al.

OO

OO

O

O

O

O

O

O

O

O

O O

O

Os

Os

Os Os

Os

Figure 2.10 One-dimensional motif I: zigzag supramolecular chain in 83120 sustainedby two M–CO(lone pair). . .p(arene) interactions per molecule.

79M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

3.7. Motif JMotif J is adopted by a sole example, 84.121 The ionic structure comprises

carbonyl-containing anions and [Ph4P]þ cations. The crystal structure features

linear polymeric chains of anions whereby adjacent hexaruthenium carbonyl

clusters are linkedby tetra-coordinatedAgþ cations.Associatedwith every sec-

ond cluster is a [Ph4P]þ cation via a singleM–CO(lone pair). . .p(arene) inter-

action, as illustrated in Fig. 2.11; see Table 2.9 for geometric parameters.

P

OO

O

O

O

OOO

OO

O

O

O

O

Ag

RuRu

Ru

RuRuRu

OO

Figure 2.11 One-dimensional motif J: polymeric chain in 84121 with every secondrepeat unit connected to a counter ion by one M–CO(lone pair). . .p(arene) interaction.

Table 2.9 Geometric data characterizing M–CO(lone pair). . .p(arene) interactions inone-dimensional motif J: polymeric chain associated with counter cation via oneinteraction per every second repeat unit, and three-dimensional motif KCompound/Reference d (Å) a (�) b (�) Metal

Motif J

84 (121) 3.20 4.6 162.2 Ru

Motif K

85 (122) 3.49 7.3 169.2 Re

80 Julio Zukerman-Schpector et al.

3.8. Motif KMotif K, the last of 11 motifs, is adopted by a sole example and is the stand-

out motif in that unlike zero-dimensional motifsA–D and one-dimensional

motifs E–J, the M–CO(lone pair). . .p(arene) interactions stabilize a three-dimensional architecture. MotifK is found in the crystal structure of 85,122 a

portion of which is illustrated in Fig. 2.12; see Table 2.9 for geometric pa-

rameters. Each molecule of 85 participates in two acceptor and two donor

contacts but these connect to four different molecules.

Figure 2.12 Three-dimensional motif H in 85122 sustained by two M–CO(lone pair). . .p(arene) interactions per molecule.

81M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

4. THIO- AND SELENOCARBONYL ANALOGUES

Compared to the ubiquitous carbonyls, thiocarbonyl analogues are

comparatively rare and selenocarbonyls are virtually nonexistent. Of the

22 thiocarbonyl structures satisfying the search criteria illustrated in Fig. 2.1,

in only 86123 were M–CS(lone pair). . .p(arene) interactions observed. Theresulting supramolecular architecture, a zigzag chain sustained by a single

M–CS(lone pair). . .p(arene) interaction per molecule, that is, analogous

to motifG, is shown in Fig. 2.13. Interestingly, the molecule of 86 also con-

tains carbonyl ligands but it is the thiocarbonyl ligand that forms the M–CS

(lone pair). . .p(arene) interaction. No evidence was found for M–CSe(lone

pair). . .p(arene) interactions.

82 Julio Zukerman-Schpector et al.

Figure 2.13 Zigzag supramolecular chain in 86123 sustained by a single M–CS(lonepair). . .p(arene) interactions per molecule.

5. STRENGTH AND CORRELATIONS

By their very nature, the described M–CO(lone pair). . .p(arene) inter-

actions are weak. As a guide to their strength, a range of energies of stabiliza-

tion of related O(lone pair). . .p(aryl) interactions has been estimated to be

1.5–5.1 kJ mol�1.11a,34 As such, well-defined geometric correlations are

not anticipated.21,124 Indeed, plots of d, a, and b, in all possible

combinations, do not reveal any systematic correlations. This is expected,

given the wide range of chemical compositions of the structures surveyed,

in terms of the nature of the transition metal, the nuclearity of the species,

the charge, and, not to mention, the diversity in the additional ligand

molecules. The above notwithstanding, it is salutatory to mention that

often the presence of M–CO(lone pair). . .p(arene) interactions is indicatedin automatic structure analysis programs such as PLATON.39c

Among the structures 1–85 surveyed here, it is noted that four pairs,

that is, 7 (Ir)46 and 8 (Rh),47 39 (W)78 and 40 (Cr),78 56 (Re)94 and 57

83M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

(Mn),95 and 59 (Os)97 and 61 (Ru),97 are isostructural, differing only in

the nature of the metal centers which, in each case, belongs to the same

group of the periodic table. It is noted that for each pair, the shortest d

associated with the M–CO(lone pair). . .p(arene) interaction involved

the heavier element. The differences in d are small and the apparent trend

might be fortuitous. If a trend does exist in the aforementioned iso-

structural series, no trends are evident when considering heterometallic

structures.

Several species engaged in M–CO(lone pair). . .p(arene) interactions areheterometallic in which different metal centers carry carbonyl ligands. The

structures 10 (Fe*, Co), 27 (Ru*, Ir), 28 (Fe, Co*), 32 (W*, Re), 36 (Ni,

Ru*), 67 (Mo, Re*), and 75 (Ru*, Pt) present no indications for preferen-

tial engagement of a metal center over another, for example, first versus sec-

ond row, second versus third row, low group number versus higher group

number; elements indicated with an asterisk are involved in theM–CO(lone

pair). . .p(arene) interaction.

6. CONCLUSIONS AND OUTLOOK

The foregoing discussion plainly indicates that M–CO(lone pair). . .

p(arene) interactions do exist in the structures of a number of

transitionorganometal carbonyl derivatives.At aminimum,molecules aggre-

gate to form dimeric supermolecules. In over 40% of the cases, the molecules

self-assemble into one-dimensional supramolecular chains of varying topol-

ogy. There was only one case where a three-dimensional architecture was

found to be stabilized by M–CO(lone pair). . .p(arene) interactions. In spite

of their inherent weak nature, M–CO(lone pair). . .p(arene) interactions doprovide a measure of stability to their crystal structures and lead to well-

defined supramolecular architectures. Such interactions ought to be searched

for when analyzing crystal structures of transition organometal carbonyl

derivatives in order to have a complete understanding of the way molecules

associate in the solid state.

ACKNOWLEDGMENTSJ. Z.-S. thanks the Brazilian agencies FAPESP, CNPq (306532/2009-3), and CAPES (808/

2009) for financial support. The Ministry of Higher Education (Malaysia) is thanked for

funding crystal engineering studies through the High-Impact Research scheme (UM.C/

HIR-MOHE/SC/12).

84 Julio Zukerman-Schpector et al.

REFERENCES1. (a) Lehn J-M. Perspectives in supramolecular chemistry—from molecular recognition

towards molecular information processing and self-organization. Angew Chem Int EdEngl. 1990;29:1304–1319. (b) Lehn J-M. Supramolecular Chemistry: Concepts and Perspec-tives. Weinheim: VCH; 1995.

2. Muller-Dethlefs K, Hobza P. Noncovalent interactions: a challenge for experiment andtheory. Chem Rev. 2000;100(1):143–167.

3. (a) Simard S, Su D, Wuest JD. Use of hydrogen-bonds to control molecularaggregation-self-assembly of 3-dimensional networks with large chambers. J Am ChemSoc. 1991;113(12):4696–4698. (b) Fyfe MCT, Stoddart JF. Synthetic supramolecularchemistry. Acc Chem Res. 1997;30(10):393–401.

4. (a) Aakeroy CB. Crystal engineering: strategies and architectures.Acta Crystallogr. 1997;B53(4):569–586. (b) Aakeroy CB, Beatty AM, Leinen DS. A versatile route to poroussolids: organic-inorganic hybrid materials assembled through hydrogen bonds. AngewChem Int Ed Engl. 1999;38(12):1815–1819. (c) Beatty AM. Hydrogen bonded net-works of coordination complexes. CrystEngComm. 2001;3:1–13. (d) Braga D,Grepioni F, Desiraju GR. Crystal engineering and organometallic architecture. ChemRev. 1998;98(4):1375–1406. (e) Braga D, Grepioni F. Organometallic crystal engineer-ing: prospects for a systematic design. Coord Chem Rev. 1999;183:19–41. (f) Braga D,Grepioni F, Biradha K, Pedireddi VR, Desiraju GR. Hydrogen bonding in organome-tallic crystals. 2. C-H. . .O hydrogen bonds in bridged and terminal first- row metal-carbonyls. J Am Chem Soc. 1995;117(11):3156–3166.

5. (a) Leininger S, Olenyuk B, Stang PJ. Self-assembly of discrete cyclic nanostructuresmediated by transition metals. Chem Rev. 2000;100(3):853–907. (b) Fujita M.Metal-directed self-assembly of two- and three-dimensional synthetic receptors. ChemSoc Rev. 1998;27(6):417–425. (c) Zaworotko MJ. Superstructural diversity in two di-mensions: crystal engineering of laminated solids. Chem Commun. 2001;1:1–9. (d)Blake AJ, Champness NR, Hubberstey P, LiWS,Withersby A, Schroder M. Inorganiccrystal engineering using self-assembly of tailored building-blocks. Coord Chem Rev.1999;183:117–138. (e) Navarro JAR, Lippert B. Molecular architecture with metalions, nucleobases and other heterocycles. Coord Chem Rev. 1999;185/186:653–667. (f)Robson R. A net-based approach to coordination polymers. J Chem Soc Dalton Trans.2000;21:3735–3744.

6. (a) Janiak C. A critical account on pi-pi stacking in metal complexes with aromaticnitrogen-containing ligands. J Chem Soc Dalton Trans. 2000;21:3885–3896. (b)Amabilino DB, Stoddart JF. Interlocked and intertwined structures and superstructures.Chem Rev. 1995;95(8):2725–2828.

7. (a) Alcock NW. Secondary bonding to nonmetallic elements. Adv Inorg ChemRadiochem. 1972;15:1–58. (b) Haiduc I. Supramolecular organometallic compounds.In: Steed J, Atwood J, eds. Encyclopedia of Supramolecular Chemistry. vol. 1.1:London:Taylor & Francis, Inc; 2007:1–8.

8. Ma JC, Dougherty DA. The cation-pi interaction. Chem Rev. 1997;97(5):1303–1324.9. (a) Mooibroek TJ, Gamez P. Anion-arene and lone pair-arene interactions are direc-

tional. CrystEngComm. 2012;14(3):1027–1030. (b) Frontera A, Gamez P, Mascal M,Mooibroek TJ, Reedijk J. Putting anion-pi interactions into perspective. Angew ChemInt Ed Engl. 2011;50(41):9564–9583. (c) Estarellas C, Bauza A, Frontera A,Quinonero D, Deya PM. On the directionality of anion-pi interactions. Phys ChemChem Phys. 2011;13(13):5696–5702. (d) Schottel BL, Chifotides HT, Dunbar KR.Anion-pi interactions. Chem Soc Rev. 2008;37(1):68–83. (e) De Hoog P, Gamez P,Mutikainen I, Turpeinen U, Reedijk J. An aromatic anion receptor: anion-pi interac-tions do exist. Angew Chem Int Ed Engl. 2004;43(43):5815–5817. (f) Das A,Choudhury SR, Estarellas C, et al. Supramolecular assemblies involving anion-pi

85M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

and lone pair-pi interactions: experimental observation and theoretical analysis.CrystEngComm. 2011;13(14):4519–4527. (g) Robertazzi A, Krull F, Knapp EW,Gamez P. Recent advances in anion-pi interactions. CrystEngComm. 2011;13(10):3293–3300. (h) Biswas C, Drew MGB, Escudero D, Frontera A, Ghosh A.Anion-pi, lone-Pair-pi, pi-pi and hydrogen-bonding interactions in a Cu-II complexof 2-picolinate and protonated 4,4’-bipyridine: crystal structure and theoretical studies.Eur J Inorg Chem. 2009;15:2238–2246. (i) Dawson RE, Hennig A, Weimann DP, et al.Experimental evidence for the functional relevance of anion-pi interactions.Nat Chem.2010;2(7):533–538. (j) Hay BP, Bryantsev VS. Anion-arene adducts: C-H hydrogenbonding, anion-pi interaction, and carbon bonding motifs. Chem Commun.2008;21:2417–2428. (k) Garau C, Quinonero D, Frontera A, Ballester P, Costa A,Deya PM. Anion-pi interactions: must the aromatic ring be electron deficient? NewJ Chem. 2003;27(2):211–214. (l) Wheeler SE, Houk KN. Are anion/pi interactionsactually a case of simple charge-dipole interaction? J Phys Chem A. 2010;114(33):8658–8664. (m) Guralskiy IA, Solntsev PV, Krautscheid H, Domasevitch KV.Metal-organic frameworks exhibiting strong anion-pi interactions. Chem Commun.2006;46:4808–4810. (n) Quinonero D, Frontera A, Deya PM. Anion-p interactionsin molecular recognition. In: Bowman-James K, Bianchi A, Garcıa-Espana E, eds. An-ion Coordination Chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA;2012;60:321–361.

10. (a) Fukin GK, Lindeman SV, Kochi JK. Molecular structures of cation. . .pi(arene)interactions for alkali metals with pi- and sigma-modalities. J Am Chem Soc.2002;124(28):8329–8336. (b) Amicangelo JC, Armentrout PB. Absolute bindingenergies of alkali-metal cation complexes with benzene determined by thresholdcollision-induced dissociation experiments and ab initio theory. J Phys Chem A.2000;104(48):11420–11432. (c) Wheeler SE, Houk KN. Substituent effects in cat-ion/pi interactions and electrostatic potentials above the centers of substituted benzenesare due primarily to through-space effects of the substituents. J Am Chem Soc. 2009;131(9):3126–3127.

11. (a) Egli M, Sarkhel S. Lone pair-aromatic interactions: to stabilize or not to stabilize.Acc Chem Res. 2007;40(3):197–205. (b) Mooibroek TJ, Gamez P, Reedijk J. Lonepair-pi interactions: a new supramolecular bond? CrystEngComm. 2008;10(11):1501–1515.

12. Nishio M. CH/pi hydrogen bonds in crystals. CrystEngComm. 2004;6:130–158.13. (a) Chen D, Lai CS, Tiekink ERT. Crystal structures of 2,2 ’-bipyridine adducts of two

cadmium O-alkyl dithiocarbonates: rationalisation of disparate coordination geome-tries based on different crystal packing environments. Z Kristallogr. 2003;218(11):747–752. (b) Jiang Y-F, Xi C-J, Liu Y-Z, Niclos-Gutierrez J,Choquesillo-Lazarte D. Intramolecular “CH. . .pi(metal chelate ring) interactions” asstructural evidence for metalloaromaticity in bis(pyridine-2,6-diimine)Ru-II com-plexes. Eur J Inorg Chem. 2005;8:1585–1588. (c) Tiekink ERT, Haiduc I. Stereochem-ical aspects of metal xanthate complexes: molecular structures and supramolecularself-assembly. Prog Inorg Chem. 2005;54:127–319. (d) Sredojevic DN, Tomic ZD,Zaric SD. Evidence of chelate-chelate stacking interactions in crystal structures of tran-sition-metal complexes. Cryst Growth Des. 2010;10(9):3901–3908. (e) Tomic ZD,Sredojevic DN, Zaric SD. Stacking interactions between chelate and phenylrings in square-planar transition metal complexes. Cryst Growth Des. 2006;6(1):29–31. (f) Tiekink ERT, Zukerman-Schpector J. Emerging supramolecular syn-thons: C-H. . .pi(chelate) interactions in metal bis(1,1-dithiolates). Chem Commun.2011;47(23):6623–6625.

14. (a) Zukerman-Schpector J, Haiduc I. Tellurium. . .pi-aryl interactions: a new bondingmotif for supramolecular self-assembly and crystal engineering. CrystEngComm.

86 Julio Zukerman-Schpector et al.

2002;4:178–193. (b) Haiduc I, Tiekink ERT, Zukerman-Schpector J. Supramolecularaggregation patterns and stereochemical consequences of Tellurium(lone pair). . .pi in-teractions. In: Tiekink ERT, Zukerman-Schpector J, eds. Frontiers in Crystal Engineer-ing: The Importance of Pi-Interactions in Crystal Engineering. Singapore: JohnWiley & SonsLtd; 2012:301–322.

15. Haiduc I, Tiekink ERT, Zukerman-Schpector J. Intermolecular Tin. . .pi-aryl inter-actions: fact or artefact? A new bonding motif for supramolecular self-assembly inorganotin compounds. In: Davies AG, Gielen M, Pannell KH, Tiekink ERT, eds.Tin Chemistry—Fundamentals, Frontiers and Applications. Chichester: JohnWiley & SonsLtd; 2008:392–411.

16. Tiekink ERT, Zukerman-Schpector J. Pb. . .pi aryl interactions as supramolecular syn-thons. Aust J Chem. 2010;63(4):535–543.

17. (a) Zukerman Schpector J, Otero de la Roza A, Luana V, Tiekink ERT. Supramolec-ular architectures based on As(lone pair) . . . pi(aryl) interactions. Chem Commun.2011;47(27):7608–7610. (b) Vickaryous WJ, Herges R, Johnson DW. Arsenic-pi in-teractions stabilize a self-assembled As2L3 supramolecular complex. Angew Chem Int EdEngl. 2004;43(43):5831–5833.

18. (a) Caracelli I, Zukerman-Schpector J, Tiekink ERT. Supramolecular aggregation pat-terns based on the bio-inspired Se(lone pair) . . . pi(aryl) synthon. Coord Chem Rev.2012;256(3–4):412–438. (b) Hartman I, Raia CA, Zauhar RJ. Evidence for a strongselenium-aromatic interaction derived from crystallographic data and ab initio quantumchemical calculations. Biopolymers. 2006;83(6):595–613.

19. Tiekink ERT, Zukerman-Schpector J. Gold. . .pi aryl interactions as supramolecularsynthons. CrystEngComm. 2009;11(7):1176–1186.

20. Gamez P, Mooibroek TJ, Teat SJ, Reedijk J. Anion binding involving pi-acidic het-eroaromatic rings. Acc Chem Res. 2007;40(6):435–444.

21. Tiekink ERT, Zukerman-Schpector J. A structural survey of metal. . .pi hetero-aromatic supramolecular synthons for metal¼ tellurium, tin, and gold.CrystEngComm.2009;11(12):2701–2711.

22. Haiduc I, Edelman FT. Supramolecular Organometallic Chemistry. Weinheim and NewYork: Wiley-VCH; 1999.

23. Haiduc I, Zuckerman JJ. Basic Organometallic Chemistry. Berlin: Walter de Gruyter &Co.; 1985.

24. (a) Beswick MA, Lopez-Casideo C, Parver MA, et al. Solvent directed aggregation of ametallocene; structures of {[Pb(Z-C5H5)2]3�C6H5Me}(infinity) and [Pb(Z-C5H5)2]6.Chem Commun. 1997;1:109–110. Overby JS, Hanusa TP, Young VG.Redetermination of the zigzag modification of plumbocene at 173 K. Inorg Chem.1998;37(1):163–165.

25. (a) Jutzi P, Meyer U, Opiela S, Olmstead MM, Stammler HG. Syntheses andX-ray crystal-structures of the compounds [2,4,6-(tert-bu)3C6H2PAs]2 and [2,4,6-(tert-bu)3C6H2PAs]2—P2As2-substituted and P2Sb2-substituted analogues of bicyclo[1.1.0]butane. Organometallics. 1990;9(5):1459–1463. (b) Bartlett RA, Cowley A,Jutzi P, Olmstead MM, Stammler HG. From sigma-bonding to pi-bonding-crystal-structures of (pentamethylcyclopentadienyl) triiodostannane and dichloro(pentamethylcyclopentadienyl)stibane. Organometallics. 1992;11(8):2837–2840.

26. Jutzi P, Burford N. Structurally diverse pi-cyclopentadienyl complexes of the maingroup elements. Chem Rev. 1999;99(4):969–990.

27. (a) Allen FH. The Cambridge Structural Database: a quarter of a million crystal struc-tures and rising. Acta Crystallogr. 2002;B58(1):380–388. (b) Bruno IJ, Cole JC,Edgington PR, et al. New software for searching the Cambridge Structural Databaseand visualizing crystal structures. Acta Crystallogr. 2002;B58(1):389–397.

87M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

28. Sarkhel S, Rich A, Egli M. Water-nucleobase “stacking": H-pi and lone pair-piinteractions in the atomic resolution crystal structure of an RNA pseudoknot. J AmChem Soc. 2003;125(30):8998–8999.

29. Jain A, Purohit CS, Verma S, Sankararamakrishnan R. Close contacts between car-bonyl oxygen atoms and aromatic centers in protein structures: pi. . .pi or lone-pair. . .piinteractions? J Phys Chem B. 2007;111(30):8680–8683.

30. Egli M, Sarkhel S. Lone pair-aromatic interactions: to stabilize or not to stabilize. AccChem Res. 2007;40(3):197–205.

31. Gallivan JP, Dougherty DA. Can lone pairs bind to a pi system? Thewater. . .hexafluorobenzene interaction. Org Lett. 1999;1(1):103–105.

32. Egli M, Gessner RV. Stereoelectronic effects of deoxyribose O4’ on DNA conforma-tion. Proc Natl Acad Sci USA. 1995;92(1):180–184.

33. Li Y, Snyder LB, Langley DR. Electrostatic interaction of pi-acidic amides withhydrogen-bond acceptors. Bioorg Med Chem Lett. 2003;13(19):3261–3266.

34. Gung BW, Zou Y, Xu Z. Quantitative study of interactions between oxygen lone pairand aromatic rings: substituent effect and the importance of closeness of contact. J OrgChem. 2008;73(2):689–693.

35. Frenking G, Frohlich N. The nature of the bonding in transition-metal compounds.Chem Rev. 2000;100(2):717–774.

36. Zukerman-Schpector J, Haiduc I, Tiekink ERT. The metal-carbonyl. . .pi(aryl) inter-action as a supramolecular synthon for the stabilisation of transition metal carbonyl crys-tal structures. Chem Commun. 2011;47(47):12682–12684.

37. Janiak CJ. A critical account on pi-pi stacking in metal complexes with aromaticnitrogen-containing ligands. Chem Soc Dalton Trans. 2000;21:3885–3896.

38. van der Bondi A. Waals volumesþradii. J Phys Chem. 1964;68(3):441–451.39. (a) Farrugia LJ. WinGX and ORTEP for Windows: an update. J Appl Crystallogr.

2012;45(4):849–854. (b) Brandenburg K.DIAMOND. Visual Crystal Structure Informa-tion System, Version 3.1. 2006 CRYSTAL IMPACT, Postfach 1251, D-53002 Bonn,Germany. (c) Spek AL. Structure validation in chemical crystallography. ActaCrystallogr. 2009;D65:148–155.

40. Richmond MG, Kochi JK. Nucleophilic additions to carbonyl ligands on tetracobaltclusters—formation of polynuclear formyl and carbine complexes. Organometallics.1987;6(4):777–788.

41. Attali S, Dahan F, Mathieu R, Caminade A-M, Majoral J-P. Unprecedentedrearrangement of a diphosphine Z1- Z2-bonded to iron—synthesis and X-ray structureof a Fe4 complexes containing either a m4 spiro phosphorus atom or a 1,1,2-trimetalladiphosphorus ligand !P¼P-. J Am Chem Soc. 1988;110(6):1990–1991.

42. Adams RD, Chen G, Qu X,WuW, Yamamoto JH. Cyclobutyne ligands. 1. Synthesisand reactivity of a cyclobutyne ligand in a triosmium complex, including a structuralcharacterization of the first cyclobutyne ligand in the complex Os3(CO)9(m3-Z

2C2CH2CH2)(m-SPh)(m-H). Organometallics. 1993;12(8):3029–3035.43. Duffey CH, Lake CK, Gray GM. Conformationally restrained octahedral

metallacrown ethers with 1,2-(Ph2P(CH2CH2O)(2))2C6H4 ligands. X-ray crystalstructure of cis-Mo(CO)4{1,2-(Ph2P (CH2CH2O)(2))(2)C6H4-P, P ’}.Organometal-lics. 1998;17(16):3550–3556.

44. Adams RD, Captain B, Fu W, Smith MD. CH and PC bond activations of PMe2Phligands by an octahedral Ru6 cluster. J Organomet Chem. 2002;651(1–2):124–131.

45. Datta P, Sardar D, Mukhopadhyay AP, Lopez-Torres E, Pastor CJ, Sinha C. Group-6metal carbonyl complexes of pyridylbenzoxazole and pyridyl benzothiazole: synthesis,structure, electrochemistry, photophysical property and DFT calculations. J OrganometChem. 2011;696(2):488–495.

88 Julio Zukerman-Schpector et al.

46. Churchill MR, Fettinger JC, Rees WM, Atwood JD. Synthesis, characterization,crystal-structure and carbonylation of the perflourophenoxyiridium(i) complex,trans-(C6F5O)Ir(CO)(PPh3)2. J Organomet Chem. 1986;308(3):361–371.

47. Osakada K, Ishii H. Solid-gas carbonylation of aryloxide rhodium(I) complexes: stepwisereaction forming Vaska-type complexes. Inorg Chim Acta. 2004;357(10):3007–3013.

48. Gargulak JD, Berry AJ, Noirot MD, Gladfelter WL. Homogeneous catalytic carbon-ylation of nitroaromatics. 5. Kinetics and mechanism of aniline and carbamate forma-tion using Ru(Ph2PCH2CH2PPh2)(CO)3. J Am Chem Soc. 1992;114(23):8933–8945.

49. Zhang H, Suo Q-L, Wang Y-B, Wang L, Weng L-H, Leng X-B. Synthesis and crystalstructure of (m3-S)FeCo2(CO)7(dppfe). Acta Phys Sin. 2002;18(8):746–749.

50. Reshetnikov AV, Talismanova MO, Sidorov AA, Nefedov SE, Eremenko IL,Moiseev II. Reactions of N-phenyl-o-semiquinonediimine complexes of nickel andplatinum with carbonyl-containing low-valence iron and rhenium compounds. IzvAkad Nauk SSSR Ser Khim Russ Chem Bull. 2001;50(1):142–146.

51. Stepnicka P. Preparation, structural characterisation and electrochemical properties ofiron(0) and tungsten(0) carbonyl complexes with 1-(diphenylphosphanyl)-1’-vinylferrocene and 1-(diphenylphosphanyl)-1 ’-(dimethylvinylsilyl)ferrocene asP-monodentate ligands. J Organomet Chem. 2008;693(2):297–306.

52. Lin JT, Wang SY, Huang PS, Hsiao YM,Wen YS, Yeh SK. Substitution of phosphinefor CO ligand in HW2(CO)9(NO)—the structures of HW2(CO)8(NO)(Z1-(Z5-C5H4PPh2)2Fe), HW2(CO)7(NO)(Ph2PH)2, HW2(CO)7(NO)-(Z2-Ph2PCH2PPh2),and [HW2(CO)8(NO)]2-(m-Ph2PCH2CH2PPh2). J Organomet Chem. 1990;388(1–2):151–167.

53. Maas G, Schaeffler L, Buck SZ. Two new ruthenium(II) complexes withcyclometalated 2-phenylpyridine ligands. Z Naturforsch B. 2008;63(8):977–984.

54. Collins CA, Salter ID, Sik V, Williams SA, Adatia T. Synthesis, crystal structures anddynamic behaviour of the pentanuclear mixed-metal cluster compounds[Au2Ru3(m-H)-(m3-COMe){m-Ph2P(CH2)(n)PPh2}(CO)9] (n¼1 or 5). J Chem SocDalton Trans. 1998;7:1107–1114.

55. Gaedt T, Eichele K,Wesemann L. Bimetallic zwitterionic complexes with an ambidentstanna-closo-dodecaborate ligand: [1-{M(CO)5}-2,7,8-(m-H)3-{Fe(triphos)}-SnB11H11] (M ¼ Cr, Mo, W). Organometallics. 2006;25(16):3904–3911.

56. Dodge RP, Schomaker V. Crystal and molecular structure of Fe(CO)3(C6H5C2C6H5)2. Acta Crystallogr. 1965;18(4):614–615.

57. Wang D, Angelici RJ, Thomas LM, Jacobson RA. Crystal structure of carbonyl[tri(p-chlorophenyl)phosphine](Z5-pentamethylcyclopentadienyl) iridium(I), (CO)[p-(ClC6H4)3P][Z

5-C-5(CH3)5]Ir. Z Kristallogr. 1997;212(3):245–246.58. Ang HG, Chang B, Kwik WL. Phosphinobenzyl-silanes and aryl-silanes and their

triosmium cluster carbonyl derivatives. J Chem Soc Dalton Trans. 1992;14:2161–2169.59. Iengo E, Zangrando E, Geremia S, Graff R, Kieffer B, Alessio E. Two-point self-

coordination of a dizinc(II) bispyridylporphyrin ruthenium complex leading selectivelyto a discrete molecular assembly: solution and solid-state characterization. Chem Eur J.2002;8(20):4670–4674.

60. Song L-C, TangM-Y,Mei S-Z, Huang J-H, HuQ-M. The active site model for iron-only hydrogenases coordinatively bonded to a metalloporphyrin photosensitizer.Organometallics. 2007;26(7):1575–1577.

61. Adams H, Agustinho SCM, Mann BE, Smith S. The structure and fluxionality of[Fe3(CO)10(dppe)]; a merry-go-round with no sense of direction. J Organomet Chem.2000;607(1–2):175–181.

62. Haupt H-J, Petters D, Florke U. First examples of acylgold(I) complexes RCOAuPPh3(R ¼Me, n-Bu, t-Bu, Ph) trapped as oxygen coordinated ligands L at one of rheniumatoms in Re-2(m-PPh2)2(CO)7(ax-L). J Organomet Chem. 1998;553(1–2):497–501.

89M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

63. Sellmann D, Lanzrath G, Huttner G, Zsolnai L, Kruger C, Claus KH. Transition-metalcomplexes with sulphur ligands. 5. Synthesis, reactivity and structure of carbonyl-iron(II), phosphine-iron(II), and hydrazine-iron(II), complexes with two-dentate and four-dentate sulphur ligands. Z Naturforsch B. 1983;38(8):961–981.

64. Fogg DE, Taylor NJ, Meyer A, Carty A. Differentiating metal centers inhomopolynuclear systems—use of the oxodiphenylphosphoranido(diphenylphosphidoxo, m-Ph2P¼O) ligand as a versatile bridging group and a compar-ison with related m-diphenylphosphido (m-PPh2) complexes. Organometallics. 1987;6(10):2252–2254.

65. Doherty S, Elsegood MRJ, Clegg W, Scanlan TH, Rees NH. An unprecedentedregiospecific attack of phosphorus nucleophiles at C-alpha of the allenyl ligand in[Fe2(CO)6(m-PPh2){m-Z1: Z2 (alpha, beta)-(H)C-alpha¼C-beta¼C gamma H2}].Chem Commun. 1996;13:1545–1546.

66. Ferrand V, Suss-Fink G, Neels A, Stoeckli-Evans H. Tri- and tetranuclear mixed-metalclusters containing alkyne ligands: synthesis and structure of [Ru3Ir(CO)11(RCCR ’)]-,[Ru2Ir(CO)9(RCCR ’)]-, and [HRu2Ir(CO)9(RCCR ’)]. Eur J Inorg Chem.1999;5:853–862.

67. Macchi P, Garlaschelli L, Sironi A. Electron density of semi-bridging carbonyls. Meta-morphosis of CO ligands observed via experimental and theoretical investigations on[FeCo(CO)8]

-. J Am Chem Soc. 2002;124(47):14173–14184.68. Chin HB, Bau R. Crystal-structure of [(PH3P)2N]þ[HFe2(CO)8]. Inorg Chem.

1978;17(8):2314–2317.69. Hynes RC, Preston KF, Springs JJ, Williams A. EPR studies of S[M(CO)5]2

- radicals(M ¼ Cr, W) trapped in single-crystals of PPNþHS[M(CO)5]2

-. Organometallics.1991;10(1):180–185.

70. Hriljac JA, Shriver DF. Cluster-assisted formation and cleavage of C-H andC-C bonds.[Fe3(CO)9(CCO)]2- and its acetylide and alkaline derivatives. J AmChem Soc. 1987;109(20):6010–6015.

71. Jeffery JC, Orpen AG, Stone FGA,Went MJ. Chemistry of di-metal and trimetal com-plexes with bridging carbine or carbine ligands. Part 40. Transformation of terminallybound alkylidyne ligands to m-alkylidene, m-vinyl, m-alkyl, and m-acyl groups at a bi-metal center; X-ray crystal-structures of [N(PPh3)2][ReW(m-CHR)(CO)9], [ReW(m-CH2R)(m-Me2PCH2PMe2)(CO)7], and [ReW(m-OCCH2R)(m-Ph2PCH2PPh2)(CO)6(P(OMe)3)] (R ¼ C6H4Me-4)L. J Chem Soc Dalton Trans. 1986;1:173–186.

72. Horwitz CP, Holt EM, Brock CP, Shriver DF. Systematics of the formation of pi-carbonyl ligands in four-iron clusters. Synthesis and structures of [K(18-crown-6)][Fe4(AuPEt3)(CO)13].CH2Cl2, Fe4(AuPEt3)(CO)12(COCH3), [PPN][Fe4(CuPPh3)(CO)13], and [PPN][Fe4(HgCH3)(CO)13]. J Am Chem Soc. 1985;107(26):8136–8146.

73. Roof LC, Smith DM, Drake GW, PenningtonWT, Kolis JW. Synthesis and reactivityof [Fe3(CO)9Te]2. Inorg Chem. 1995;34(1):337–345.

74. Chihara T, Yamazaki H. Syntheses and crystal-structures of the ruthenium car-bidocarbonyl clusters [Ru5C(CO)11(m-Br)

2(Z3-C3H5)(m-Z3-C3H5)], [Ru5C

(CO)13(m-I)(m-Z2-COMe)]-, [Ru5(C)(CO)14 (m-Br)2] and [RU6C(CO)16(m-Br)]

-

with novel metal frameworks. J Chem Soc Dalton Trans. 1995;8:1369–1377.75. Brivio E, Ceriotti A, Pergola RD, Garlaschelli L, Manassero M, Sansoni M.

Nickel-ruthenium mixed-metal carbonyl clusters. Syntheses and solid state structuresof the two tetrahedral clusters [PPh4][NiRu3(m3-H)(CO)9(m-CO)3] and[NEt4]2[NiRu3(CO)8(m-CO)4]. J Cluster Sci. 1995;6(2):271–287.

76. Rossignoli M, Burns RC, Craig DC. Photolytic, pyrolytic and trimethylamineN-oxide induced CO removal from [BiFe4(CO)16]

3-: synthesis, X-ray crystal structureand properties of [N(PPh3)2]2[Bi2Fe5(CO)17]. Aust J Chem. 2000;53(11–12):975–982.

90 Julio Zukerman-Schpector et al.

77. Shiu K-B, Lin S-T, Peng S-M, Cheng M-C. Synthesis and structural characterizationof some molybdenum carbonyl nitrosyl complexes of diethyldithiocarbamate. InorgChim Acta. 1995;229(1–2):153–163.

78. Kircher P, Huttner G, Heinze K, Zsolnai L. The 1,3-Sn2O2-heterocycle as a ligand inorganometallic compounds—dimerization of the inidene species [{(CO)5M}2SnOR]-

(M ¼ Cr, W). Eur J Inorg Chem. 1998;8:1057–1066.79. Brand U, Shapley JR. Carbidohexarhenate cluster cores bicapped by mercury with

acetate or thiolate ligands. Inorg Chem. 2000;39(1):32–36.80. Hezel F, Fenske D, Eisenmann J, Wetzel T. Synthesis and crystal structures of new

phosphorus-bridged bimetallic clusters of the elements mercury and iron. Z Anorg AllgChem. 2000;626(1):290–301.

81. Roof LC, Pennington WT, Kolis JW. Novel iron carbonyl telluride clusters—synthesis and characterization of [Fe5Te4(CO)14]

2- and [Fe8Te10(CO)20]2-. Angew

Chem Int Ed Engl. 1992;31(7):913–915.82. Albano VG, Monari M, Demartin F, et al. Synthesis and chemical behaviour of

[MFe4(CO)16]n- (M¼Au, Zn, Cd, Hg) clusters: X ray structure of

[NMe3CH2Ph]2[Au{Fe-2(CO)8}2]Cl and [PPh4]2[Cd{Fe-2(CO)6(m-CO)2}2]2CH3CN. Solid State Sci. 1999;1(7–8):597–606.

83. Coucouvanis D, Salifoglou A, Kanatzidis MG, Dunham WR, Simopoulos A,Kostikas A. Synthesis, structural characterization, and electronic properties of the[Fe6S6X6(M(CO)3)2]

n- anions (M ¼ Mo, W N ¼ 3, 4 X ¼ Cl, Br, I). Heteronuclearclusters of possible structural relevance to the Fe/Mo/S center in nitrogenase. InorgChem. 1988;27(22):4066–4077.

84. Delferro M, Cauzzi D, Pattacini R, Tegoni M, Graiffand C, Tiripicchio A. A study onthe coordinative versatility of the zwitterionic S, N, S ligand EtNHC(S)Ph2P ¼NPPh2C(S)NEt in its anionic, neutral and cationic forms—determination of absolutepK(a) values in CH2Cl2 of Rh-I complexes. Eur J Inorg Chem. 2008;14:2302–2312.

85. Gallop MA, Gomez-Sal MP, Housecroft CE, et al. A face-capping bonding mode forbenzene in triosmium carbonyl cluster complexes. J Am Chem Soc. 1992;114(7):2502–2509.

86. Bennett MJ, Graham WAG, Stewart Jr. RP, Tuggle RM. Structure and spectroscopicproperties of m-(ortho-tetrafluorophenylene)-diiron octacarbonyl, C6F4Fe2(CO)8.Inorg Chem. 1973;12(12):2944–2949.

87. AdamsRD,CaptainB,Smith Jr. JL.The activation and transformations of acenaphthyleneby osmium carbonyl cluster complexes. J Organomet Chem. 2003;683(2):421–429.

88. Slot HJB, Murrall NW, Welch AJ. Structure of tetracarbonyl(phenantroline) molyb-denum(0), [Mo(CO)4(C12H8N2)], at 185-K. Acta Crystallogr. 1985;C41:1309–1312.

89. HongF-E, Liaw J-W,ChienB-J, et al.Nucleophilic substitution reactions of acetylides onsubstituted tricarbonyl(Z6-fluoroarene)chromium and reactions of tricarbonyl[Z6-(2-trimethylsilylethynyl) toluene]chromium and tricarbonyl[Z6-(p-ethynylphenylethynyl)benzene]chromium with dicobalt octacarbonyl. Polyhedron. 1999;18(21):2737–2747.

90. Araujo MH, Pereira RMS, Vargas MD, Braga D, Grepioni F. X-ray molecular struc-tures and multinuclear NMR studies of the tetranuclear iridium clusters [Ir4(CO)7(m4-Z

3-PhCC(H)CCPh)-(m-PPh2)3] and [Ir4(CO)7(m3-Z2-HCCPh)(Z1-

CCPh)(m-PPh2)3]. J Organomet Chem. 2005;690(21–22):4611–4619.91. Adams RD, Dawoodi Z, Foust DF, Segmuller BE. Cluster syntheses. 2. The role of

heteroatoms in the formation of high nuclearity transition-metal carbonyl cluster com-pounds. The condensation of small clusters. J Am Chem Soc. 1983;105(4):831–838.

92. Draper SM, Delamesiere M, Champeil E, Twamley B, Byrne JJ, Long C. Novelacetylene-linked di-cobalt and tetra-cobalt carbonyl clusters. J Organomet Chem.1999;589(2):157–167.

91M–CO(Lone-Pair). . .p(Arene) Interactions Assembling Transition Metal Compounds

93. Kumaresan S, Lu K-L, Hung J-T, Lee F-Y,Wen Y-S, Hwu JR. Different coordinationmodes of 3-hydroxy-1,2,3-benzotriazin-4(3H)-one: molecular structures of (m-H)OS3(CO)10(m2-(2,3-Z

2)-(O)NNNC7H4O) and (m-H) Ru3(CO)10(m2-(1,2-Z2)-

NNN(O)C7H4O). J Organomet Chem. 1997;549(1–2):155–161.94. Haupt H-J, Schwefer M, Florke U. On the selectivity of the isolobal proton-exchange

in the hydrido/phosphido bridged dirhenium complex Re2(m-H)(m-PCYH)(CO)8.Z Anorg Allg Chem. 1995;621(6):1098–1105.

95. Haupt H-J, Schwefer M, Egold H, Florke U. Reactivity of deprotonated Mn2 (m-H)(m-PCYH)(CO)8—selective monoauration to Mn2(m-AUPR3)(m-PCYH)(CO)8 andM2(m-H)(m3-PCY(AUPR3))(CO)8 (R¼CY, PH, P-C6H4F, P-C6H4OMe) and ki-netic studies of their conversion. Inorg Chem. 1995;34(22):5461–5467.

96. WaterlandMR,SimpsonTJ,GordonKC,BurrellAK.Spectroelectrochemical studies andexcited-state resonance-Raman spectroscopy of some mononuclear rhenium(I) poly-pyridyl bridging ligand complexes. Crystal structure determination of tricarbonylchloro[2,3-di(2-pyridyl)quinoxaline]rhenium(I). J Chem Soc Dalton Trans. 1998;1:185–192.

97. Kakizawa T, Hashimoto H, Tobita H. Synthesis and structural characterization ofmesitylphosphinidene-capped ruthenium and osmium clusters. J Organomet Chem.2006;691(4):726–736.

98. Adams RD, Chen L, WuW. Transformation of alkenyl-N-arylthioamido ligands intoquinolino-2-thiolate ligands in di-rhenium carbonyl complexes. Organometallics.1993;12(12):4962–4970.

99. Prest DW, Mays MJ, Raithby PR. The reactivity of the unsaturated dimeric rheniumcomplexes [Re2H2(CO)6((EtO)2POP(OEt)2)] and [Re2H2(CO)6(Ph2PCH2PPh2)]:X-ray crystal structure of [Re2H(CO)6(Ph2PCH2PPh2)(m-NC(H)Me)]. J Chem SocDalton Trans. 1982;10:2021–2028.

100. Clarke LP, Davies JE, Raithby PR, Shields GP. Novel coordination modes of partiallyhydrogenated diyne ligands on metal carbonyl clusters. J Chem Soc Dalton Trans.2000;24:4527–4533.

101. Dutta DK, Chutia P, Woollins JD, Slawin AMZ. A new series of iodocarbonyl ruthe-nium (II) complexes with unsymmetrical phosphine-phosphine sulfide ligands of thetype Ph2P(CH2)nP(S)Ph2, n¼1-4: isolation and structural investigation. Inorg ChimActa. 2006;359(3):877–882.

102. Engel DW, Moodley KG, Subramony L, Haines RJ. Reaction of triruthenium dode-cacarbonyl with bis(dimethylphosphino)methane, bis(diphenylphosphino) methaneand bis(diphenylphosphino)-ethylamine under photochemical conditions. J OrganometChem. 1988;349(3):393–403.

103. Chen T, Jackson J, Jasper SA, Duesler EN,NothH, Paine RT. Coordination chemistryof aminoborylphosphanes. Crystal structure determinations of ((Pr2N)-Pr-i)2BP(H)SiPh3 � Cr(CO)5 and [((Pr2N)-Pr-i)2BP(H)]2SiMe2 � W(CO)4. J Organomet Chem.1999;582(1):25–31.

104. Perez J, Hevia E, Riera L, et al. Mono- and dimetallic cyano complexes with Mo(Z3-allyl)(CO)2(N-N) fragments. Eur J Inorg Chem. 2003;6:1113–1120.

105. Hahn FE, Langenhahn V, Meier N, Lugger T, FehlhammerWP. Template synthesis ofbenzannulated N-heterocyclic carbene ligands. Chem Eur J. 2003;9(3):704–712.

106. Andreu PL, Cabeza JA, Riera V, Jeannin Y, Miguel D. The different reactivity of2-aminopyridines and 2-pyridone with [Ru3(CO)12]. X-ray crystal-structure of[Ru3(m-H)(m3-ANPY)(CO)9](HANPY¼ 2-anilinopyridine). J Chem Soc Dalton Trans.1990;7:2201–2206.

107. Clegg W, Sheldrick GM, Stalke D, Bhaduri S, Khwaja HK. Structure of bis(m3-phenylimido)-tris(tricarbonyliron)(2Fe-Fe), [Fe3(C6H5N)2(CO)9].ActaCrystallogr.1984;C40:2045–2047.

92 Julio Zukerman-Schpector et al.

108. Goldberg SZ, Raymond KN. Trans interaction in a metal-carbonyl—structure of((triphenylphosphinemethylide)diphenylphosphine oxide) pentacarbonyltungsten(0),W(CO)5(O¼P(C6H5)2CHP(C6H5)3). Inorg Chem. 1973;12(12):2923–2927.

109. Slawin AMZ, Smith MB, Woollins JD. Reactions of [R2P(E)]2NH (R¼Ph or Pr-i,E¼S or Se) with [Ru3(CO)12]: crystal structures of [Ru4(m4-Se)2(m-CO)(CO)8-{(Ph2P)2NH-P, P’}], [Ru4(m4-S)2(m-CO)(CO)8{(Pr(i)2P)2NH-P, P’}] and [Ru3(m3-S)2(CO)7{(Ph2P)2NH-P, P’}]. J Chem Soc Dalton Trans. 1997;11:1877–1881.

110. Venkatakrishnan TS, Nethaji M, Krishnamurthy SS. Ruthenium carbonyl clusters ofdiphosphazanes bearing axially chiral moieties. Curr Sci. 2003;85(7):969–974.

111. Jones PG, Raithby PR. Private Communication to CSD; 2006.112. Adams RD, Barnard TS, Li Z, WuW, Yamamoto J. Cluster synthesis. 43. New layer-

segregate platinum-ruthenium cluster complexes and their reactions with dip-henylacetylene. Organometallics. 1994;13(6):2357–2364.

113. Hogarth G, O’ Brie M, Tocher DA. Thiocarbyl ligands via eliminationof pentafluorobenzene at a diiron centre: crystal structures of [Fe2(CO)4m-SC(Ph)¼CH (m-dppm)] and [Fe2(CO)4 {m-SCH ¼C(Ph)C(O)}(m-dppm)].J Organomet Chem. 2003;672(1–2):22–28.

114. Hermans S, Khimyak T, Feeder N, Teat SJ, Johnson BFG. Ligand substitutions in Ru-Pt clusters: isolation of compounds with unusual geometries. Dalton Trans.2003;4:672–684.

115. Belletti D, Graiff C, Massera C, Pattacini R, Predieri G, Tiripicchio A. Polynuclearselenido-carbonyl manganese complexes derived from tertiary phosphine selenides.Inorg Chim Acta. 2003;356:187–192.

116. Lin JT, Chang K-Y, Gong ML, et al. Reactivity of dinuclear tungsten carbonylsbridged both by hydride and by bidentate phosphine-ligands, (m-H)(m-Ph2P(CH2)NPPh2)W2(CO)7(NO)(N ¼ 1-3). J Organomet Chem. 1992;431(1):65–80.

117. Lentz D, Anibarro M, Preugschat D, Bertrand G. Transition metal complexes and cy-cloaddition products of pentafluorophenyl isocyanide. J Fluor Chem. 1998;89(1):73–81.

118. Renner G, Huttner G, Rutsch P. Synthesis and structure of oxo-bridged, M(CO)5protected hexagermanium cage compounds. Z Naturforsch B. 2001;56(12):1328–1339.

119. Preut H, Haupt H-J, Florke U. Octacarbonyl-bis(m-{iodo[tetracarbonyl(triphenylphosphine)rhenio]stannio(IV)})-dirhenium, [Re2(CO)8{Sn(I)Re(CO)4[P(C6H5)3]}2]. Acta Crystallogr. 1984;C40:600–602.

120. Braga D, Grepioni F, Johnson BFG, Lewis J, Lunniss J. Multiple carbon carbon bond-cleavage on a heptaosmium cluster—synthesis and structural characterization of(Os7(CO)18(m3-CPh)2) and (Os7(CO)15(m3-CPh)4). J Chem Soc Dalton Trans.1991;9:2223–2227.

121. Nakajima T, Ishiguro A, Wakatsuki Y. Formation of super wires of clusters by self-assembly of transition metal cluster anions with metal cations. Angew Chem Int Ed Engl.2001;40(6):1066–1067.

122. Dinolfo PH, Benkstein KD, Stern CL, Hupp JT. C- and Z-shaped coordination com-pounds. Synthesis, structure, and spectroelectrochemistry of cis- and trans-[Re(CO)3(L)]2-2,2 ’-bisbenzimidizolate with L¼4-phenylpyridine, 2,4 ’-bipyridine, orpyridine. Inorg Chem. 2005;44(24):8707–8714.

123. McGlinchey MJ, Fletcher JL, Sayer BG, et al. Stopping a chromium carousel: X-raycrystallographic and variable-temperature C-13 NMR—studies on dicarbonyl(hexaethylbenzene)-thiocarbonylchromium(0) and related complexes. Chem Commun.1983;11:634–636.

124. Dunitz JD, Taylor R. Organic fluorine hardly ever accepts hydrogen bonds. Chem EurJ. 1997;3:89–98.