Adam J. Fleisher David W. Pratt University of Pittsburgh Alessandro Cembran Jiali Gao University of...

29
Adam J. Fleisher David W. Pratt University of Pittsburgh Alessandro Cembran Jiali Gao University of Minnesota Charge redistribution in the β-naphthol-water complex as measured by high resolution Stark spectroscopy in the gas phase. MG- 04

Transcript of Adam J. Fleisher David W. Pratt University of Pittsburgh Alessandro Cembran Jiali Gao University of...

Adam J. FleisherDavid W. Pratt

University of Pittsburgh

Alessandro CembranJiali Gao

University of Minnesota

Charge redistribution in theβ-naphthol-water complex as measured by high resolution Stark spectroscopy in the gas phase.

MG-04

Condensed phase H-bonds

S0

S1

S2

RO-H RO– + H+?

LE CT

Fig. 5 in Schütz, M., Bürgi, T., Leutwyler, S., Fischer, T. J. Chem. Phys. 99, 1469, (1993).

In the gas phase, the cis-2HN-water origin is red shifted by 371 cm-1 from the 2HN origin.

cm-1

OHOROHOHR h32

Fleisher, A.J., Morgan, P.J., Pratt, D.W. J. Chem. Phys. 131, 211101, (2009).

Gas phase H-bonds

2-HN-water

Field free 2HN-water (TA-03)

B

A

Sim

Exp

2.1 cm-1

2140 MHz

Stark cell and collection optics

cbag

Zggzs EEH,,

~

30901.4 30904.7 cm-1

0.04 cm-1

0 V/cm

846 V/cm

1776 V/cm

Stark effect in 2-naphthol

Fleisher, A.J., Morgan, P.J., Pratt, D.W. J. Chem. Phys. 131, 211101, (2009).

2-HN-water Stark spectra

2 cm-1

0 V/cm

169 V/cm

846 V/cm

2HN-water Stark splitting

0 V/cm

169 V/cm

846 V/cm

0.04 cm-1

Results

State Bare Molecule H2O NH3

Ground 1.01 D 4.00 D 3.89 D

Excited 1.17 D 4.66 D 4.94 D

Qdct ctinducedsolventsolutetotal

In 2HN-H2O,Q = 0.07 e in S0, and Q* = 0.10 e in S1

Dipole decomposition

Fleisher, A.J., Morgan, P.J., Pratt, D.W. J. Chem. Phys. 131, 211101, (2009).

This results in a 323 cm-1 calculated red shift (371 cm-1 in experiment).

Static vector model

solutesolventinducedcharge transfer

BLW-ED method

Scheme 1 in Mo, Y., Gao, J., Peyerimhoff, S.D. J. Chem. Phys., 112, 5530 (2000).BLW-ED reported using B3LYP/6-31+G* (geometries were optimized using M06-2X/6-31+G*).

S0 c2HNA(cm-1)

BLW|%|

static|%|

c2HNW(cm-1)

BLW|%|

static|%|

ΔEr +420 ?

ΔEstat -730 20 15 ? ? 22

ΔEpol -980 27 5 ? ? 14

ΔEct -1900 53 80 ? ? 64

ΔEint -3200 ?

ammonia, water

β-naphthol

Dynamic charge distribution

HF/6-31+G* optimization of 11 points along a path exchanging the two hydrogen atoms of water.

Dynamic charge distribution

Start

Transition State

Induced charge motion

… produces a large change in the charge distribution of the molecule to which it is attached.

Motion of the water molecular along the torsional coordinate …

Motion of the ammonia molecular along the torsional coordinate …

… produces little change in the charge distribution of the molecule to which it is attached.

HF/6-31+G* optimization of points along a path exchanging equivalent solvent hydrogens.

Induced charge motion

Time-varying dipole field (II)

2

0

2 V

V

2

0

2

)coordinate (torsional

• A static model of energy and dipole moment decomposition based on electrostatic contributions was used to explain the experimentally observed red shift in 2HNW.

• The block-localized wavefunction energy decomposition (BLW-ED) method was used to investigate electrostatic, induced, and charge transfer interactions.

• Future work on understanding the importance of the time varying nature of the water dipole must be included.– Important to the understanding of condensed phase water systems.

Summary

• Justin Young

• Philip Morgan• Diane Miller

Marquette University

• Ryan Bird• Jessica Thomas• Casey Clements• Patrick Walsh

Acknowledgments

• Dr. David W. PrattUniversity of Pittsburgh

• Dr. David PlusquellicNIST, jb95 development

• Dr. David BorstIntel, Stark development

2

0

2b

a

Time-varying dipole field (I)

2cos12

1cos12

2

1

c

cV

• Torsional TS was optimized using HF/6-31+G*, along with 8 other points between ϕ = 0 – 180°.

• The electric potential at the COM of 2HNW as a function of the torsional coordinate ϕ was fit to 21 data points.

• The electric potential function was scaled by the probability of water being in each position along ϕ using the experimental V2 = 206 cm-1, compared to a barrierless torsion.a

aRazavy, M. and Pimpale, A. Physics Reports, 168, 305 (1988).

H-bond ‘jumps’ in bulk water

Fig. 1 in Ji, M., Odelius, M., Gaffney, K.J. Science. 328, 1003, (2010).

43 NHORNHOHR h

Fleisher, A.J., Morgan, P.J., Pratt, D.W. J. Chem. Phys. 131, 211101, (2009).

Excited State Proton Transfer

S0 S1

µ1 (D) 1.01 1.17

µ2 (D) 1.472 1.472

µind (D) 0.29 0.36

Eµµ (cm-1) -62.4 -113.6

Eαµ (cm-1) -23.6 -43.5

ECT (cm-1) -427.7 -958.0

Ecomplex,rel (cm-1) -513.7 -1115.1

Red Shift in 2HNA

S0 S1

µ1 (D) 1.01 1.17

µ2 (D) 1.855 1.855

µind (D) 0.65 0.75

Eµµ (cm-1) -61.2 -147.4

Eαµ (cm-1) -40.5 -52.3

ECT (cm-1) -183.2 -408.2

Ecomplex,rel (cm-1) -284.9 -607.9

Red Shift in 2HNW

0.04 cm-1

30315.4 30318.6 cm-1

E A

0 V/cm

1269 V/cm

423 V/cm

Stark Effect in 2-Naphthol-Ammonia

Vector Model – 2HNA

2HNW Field Free DataA (σ = 0) B (σ = 1)

S0

A (MHz) 1725.9(1) 1724.9(1)

B (MHz) 548.1(1) 548.1(1)

C (MHz) 416.6(1) 416.8(1)

ΔI (amu Å2) -1.781 -2.609

S1

A (MHz) 1687.4(1) 1686.3(1)

B (MHz) 553.4(1) 553.3(1)

C (MHz) 417.3(1) 417.5(1)

ΔI (amu Å2) -1.741 -2.648

Origin (MHz) 915333681(30) 915339355(30)

# lines 141 458

OMC (MHz) 4.1 5.0

L/G LW (MHz) 9/25 9/25

Rel. Intensity 1 3

A (σ = 0) B (σ = 1)

S0

ΔJ (KHz) 0.17(9) 0.03(3)

ΔJK (KHz) -0.8(7) -1.0(2)

ΔK (KHz) 3(2) 1.2(4)

δJ (KHz) 0.04(4) 0.005(14)

δK (KHz) 5(2) 1.5(5)

S1

ΔJ (KHz) 0.20(9) -0.04(3)

ΔJK (KHz) -1.2(6) -0.4(2)

ΔK (KHz) 3(2) 0.6(4)

δJ (KHz) 0.05(5) -0.02(1)

δK (KHz) 5(2) 1.1(5)

OMC (MHz) 3.7 4.3

Watson A-reduction distortion terms improve the fit of J ≥ 20 transitions, and do not change any other inertial parameters by more than two standard deviations.

2HNW dipole projectionsS0 S1

μa (D) -3.11 -4.09

μb (D) 2.51 2.23

μc (D) 0.0 0.0

μ (D) 4.00 4.66