AC - IPFWlin/ECET211/spring2013/1-Lectures/ECET-211...AC Circuits (steady state) ... Using sin(377t)...

8

Click here to load reader

Transcript of AC - IPFWlin/ECET211/spring2013/1-Lectures/ECET-211...AC Circuits (steady state) ... Using sin(377t)...

Page 1: AC - IPFWlin/ECET211/spring2013/1-Lectures/ECET-211...AC Circuits (steady state) ... Using sin(377t) as the reference vector ... P = 11.948 KW, Q = 20.695 KVAR ...

ECET 211 Electric Machines and Controls Lecture  

Feb. 12, 2013  

  AC Circuits (steady state) 

Complex numbers  Voltage source 

o v(t) = Vm sin (ωt + θ); ω = 2πf o V = Vrms∟θ – Polar form o Vrms = Vm / √2 = Vm * 0.707  

The Sinusoidal Forcing Function o v(t) = Vm*sin(2πft + θ), ω = 2πf = 2π/T o sin(ωt + 90º) = sin(ωt + π/2) = cos ωt o cos(ωt  ‐ 90º) = cos(ωt – π/2) = sin ωt o sin(‐θ) = ‐sin θ o cos(‐θ) = cos(θ) 

Frequencies: 60 Hz, 50 Hz  The Phasor 

o v(t) = Vm sin(ωt + θ1) → V = Vm/√2 ∟θ1 o i(t) = Im sin(ωt + θ2) → I = Im/√2 ∟θ2 

Phasor Relationships for R, L, and C  Impedance  

o Z = R + j(XL – XC) – ractangular form (Impedance triangle) 

θ = tan-1 (XL‐XC)/R o Z = |Z| ∟θ = |Z| [cosθ + j sin θ] o R = Z cos θ o X = Z sin θ o ZR = R∟0º o ZL = XL∟90º; XL = j2πf L o ZC = XC∟‐90º; XC = ‐j1/2πf C o Zt = Z1 + Z2 + ... + Zn 

I = E/Z  Complex power   

o Apparent power = P + jQ = EI cosθ + j EI sinθ (Unit: VA = watts + vars; KVA, KW, KVAR) 

o Power triangle o Power factor – cosθ; power factor correction 

  Homework #3 Assigned date: 2013/2/5 MATLAB Solution  Problem 2‐1. The voltage and current in a given system are given by:  

⁄  

Page 2: AC - IPFWlin/ECET211/spring2013/1-Lectures/ECET-211...AC Circuits (steady state) ... Using sin(377t) as the reference vector ... P = 11.948 KW, Q = 20.695 KVAR ...

. ⁄   Write phasor expressions for the voltage and current and draw a phasor diagram showing the voltage and current for the following cases: (a). Using sin(377t) as the reference vector (b). Using the voltage as the reference phasor (c). Using the current as the reference phasor  %ecet211_prob2_1.m % Paul Lin % Chapter 2 f = 60; T = 1/f; % 16.67 ms dt = T/100; t = 0: dt: 2*T; w = 2*pi*f; % 377.7 rad/sec Vm = 169; Vrms = Vm /sqrt(2) % 119.5 Volts Vt = Vm*sin(2*w*t + pi/6); VrectForm = Vrms*exp(j*pi/6) % 103.5 + j59.8 Volts Im = 282.8; Irms = Im/sqrt(2); %199.97 Amperes It = Im*sin(w*t - pi/6); IrectForm = Irms*exp(-j*pi/6) % 173.2 -j99.9 Amperes figure(1), plot(t, Vt,'red', t, It,'black'), grid on title('V(t) 169 sin(wt+pi/6), I(t) =282.8sin(wt -pi/6)') xlabel('time - second') % theta = pi/6; % compass (z) => compass(REAL(z), IMAG(z) % rose() % feather() % qyuiver() theta = 0: pi/6 : 2*pi; VmP = Vm*sin(theta + pi/6) figure(2), subplot(2,1,1),compass(VrectForm, '--r'); figure(2), subplot(2,1,2),compass(IrectForm,'--r'); % A = [VrectForm, IrectForm]; figure(3), compass(A)  

Page 3: AC - IPFWlin/ECET211/spring2013/1-Lectures/ECET-211...AC Circuits (steady state) ... Using sin(377t) as the reference vector ... P = 11.948 KW, Q = 20.695 KVAR ...

  

  

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035-300

-200

-100

0

100

200

300V(t) 169 sin(wt+pi/6), I(t) =282.8sin(wt -pi/6)

time - second

100

200

30

210

60

240

90

270

120

300

150

330

180 0

100

200

30

210

60

240

90

270

120

300

150

330

180 0

Page 4: AC - IPFWlin/ECET211/spring2013/1-Lectures/ECET-211...AC Circuits (steady state) ... Using sin(377t) as the reference vector ... P = 11.948 KW, Q = 20.695 KVAR ...

 Problem 2‐2. Find the complex power in both rectangular form and polar form for the system of Problem 2‐1. Indicate the values of P, Q, and |S|.  Ans: Use equation on page 68                               ∗ ∗            Rectangular form: Complex Power 

Apparent Power  = Real Power + j*Reactive Power       S = P +jQ            Vrms = 169/sqrt(2) = 119.5 Volts          Irms = 282.8/sqrt(2) = 199.97  Rectangular  Form: Rectangular form: Apparent Power  = Real Power + j*Reactive Power  

∗ ∗ ∗          unit => VA, KVA, MVA Vreal = Vrms*cos(0) = 119.5  Vimag = Vrms*sin(0) = j*0 Ireal = Irms*cos(‐pi/3) = 99.99  Iimag = Irms*sin(‐pi/3) = ‐j*173.18 I = 99.99 –j*173.18 

I* = Complex Conjugate of I = 99.99 +j*173.18     (Change the sign of the imaginary part) So 

∗ ∗ ∗  = (119.5) * (99.99 +j*173.18) = 1.1948E4 + j*2.0693E4 = 11.948 + j20.695 KVA S = P + JQ P = 11.948 KW,  Q = 20.695 KVAR  

Polar Form |S| = abs(S) = 23.896 KVA 

50

100

150

200

30

210

60

240

90

270

120

300

150

330

180 0

Page 5: AC - IPFWlin/ECET211/spring2013/1-Lectures/ECET-211...AC Circuits (steady state) ... Using sin(377t) as the reference vector ... P = 11.948 KW, Q = 20.695 KVAR ...

Angle = angle(S) = 1.0472 radians (60 degree)   %ecet211_prob2_2.m % Paul Lin Vm = 169; Vrms = Vm /sqrt(2); % 119.5 Volts % Choosing voltage as a reference VrectForm = Vrms * exp(j*0) % 119.5 + j0 Volts Im = 282.8; Irms = Im/sqrt(2); %199.97 Amperes % V = V/_theta = V*exp(j*theta) IrectForm = Irms * exp(-j*pi/3) % 99.9 -j173.2 Amperes % Irms*cos(-pi/3) + j*Irms(sin(-pi/3) IrectForm2 = Irms*cos(-pi/3) -j*Irms*(sin(-pi/3)) % Comp[lex Conjugate: 99.9 +j173.2 Ampere % Equation 2-22 % S = VI* or V times Complex Conjugate of I PrectForm = VrectForm * IrectForm2 % 1.1948e+04 + 2.0695e+04i P = real(PrectForm) % 11.948 KW Q = imag(PrectForm) % 20.695 KVAR S_abs = abs(PrectForm) % 2.3897E4 = 23.897 kVA S_angle = angle(PrectForm) %1.0472 rad, 60 degree    Problem 2‐3. Figure 2‐29 shows a sinusoidal voltage and current. 

(a) Write the voltage and current as function of time. (b) Write the voltage and current as phasors using sin(ωt) as the reference phasor. (c) Write the voltage and current as the reference phasor. (d) Calculate the impedance of the load that this current is being delivered to. 

  %ecet211_prob2_3.m % Paul Lin Vm = 170; THETA = 2*pi; dTheta = THETA/100; theta = 0: dTheta : THETA; Vrms = Vm /sqrt(2) % 120.2 Volts Vt = Vm*sin(theta + 0); % Choosing voltage as a reference Im = 20; Irms = Im/sqrt(2); %14.14 Amperes % I leads V by 60 degree It = Im*sin(theta + pi/3); plot(theta, It, theta, Vt), grid on V = Vrms*exp(j*0) I = Irms*exp(j*pi/3) % 7.07 + j12.25 Zrect = V/I

Page 6: AC - IPFWlin/ECET211/spring2013/1-Lectures/ECET-211...AC Circuits (steady state) ... Using sin(377t) as the reference vector ... P = 11.948 KW, Q = 20.695 KVAR ...

%Z = R + jXC = 4.25 - j 7.36 Ohms Zpolar = abs(Zrect) % 8.50 ohms Zpolar_angle = angle(Zrect) % -1.0472 Radians, -60 degrees V =   120.2082 I =    7.0711 +12.2474i Z =    4.2500 ‐ 7.3612i = 8.5/_‐60˚  Ohms   

  Problem 2‐4. Consider a parallel R‐C circuit with R = 20 Ω and ‐JXc = ‐j13Ω, with an applied voltage of 240/0˚ V. 

(a) Calculate the real, reactive, and apparent power. (b) Calculate the total current from the source and the resistor and capacitor (inductor) currents. 

Solution: Given    Z = R –jXC = 20 –j*13 Ohms    and  V = 240/_0˚  Volts Find I = V/Z =  I_real + j*I_imaginary  Compute complex power or apparent power (in KVA) S = V times (Conjugate of I) = VI* = P + JQ P = real power,  Q = reactive power   %ecet211_prob2_4.m % Paul Lin % Resistor and capacitor are in parallel R = 20; XC = -j*13;

0 1 2 3 4 5 6 7-200

-150

-100

-50

0

50

100

150

200

Page 7: AC - IPFWlin/ECET211/spring2013/1-Lectures/ECET-211...AC Circuits (steady state) ... Using sin(377t) as the reference vector ... P = 11.948 KW, Q = 20.695 KVAR ...

Z = R + XC; Vrms = 240; Vrect= Vrms*exp(j*0) % 240 + j0 % P = V^2/R P = (V*V)/R % 2.88KW Q = j*V^2/XC % -4.331 KVAR S = P + j*Q % S = P + jQ KVA S_abs = abs(S) % 5.285 KVA IR = Vrms/R % 12 amperes IC = Vrms/XC % +j18.46 Amperes It = IR + IC % 12 + j18.46 Amperes It_mag = abs(It) % 22.02 Amp current measured by an Ammeter It_angle = angle(It) % 0.9944 radians; 56.976 degree   Problem 2‐7. A single‐phase load has a voltage of 120/_26˚ V and a current of 45/_‐8˚. 

(a) Calculate the impedance of the load. (b) Calculate the apparent power, real power, reactive power, and power factor. 

Solution: Z = V/I = 120/45 /_26+8 = 2.67/_34˚ = 2.67 cos(34˚) + j*2.67sin(34˚)  180       PI ‐‐‐   =   ‐‐‐‐  => X = (PI*34)/180 = 0.5934 radians 34         X  %ecet211_prob2_7.m % Paul Lin % V = 120/_26 degree % I = 45 /_-8 degree Vtheta = (pi*26)/180 %0.4538 radians Itheta = -(pi*8)/180 % -0.1396 radians V = 120*exp(j*Vtheta) % 107.86 + j52.60 I = 45*exp(j*Itheta) % 44.56 -j6.26 % Impedance of the Load Z = V/I % 2.21 +j1.49 Ohms Z_abs = abs(Z) % 2.667 Ohms Z_angle = angle(Z) % 34 defree (0.5934 radians) % Appraent Power, Real Power, Reactive Power, Power Factor I_conjugate = real(I) -j* imag(I) % 44.56 + j6.26 S = V*I_conjugate % Apparent Power: 4.48 +j3.02 KVA P = real(S) % Real Power: 4.48 KW Q = imag(S) % Reactive Power 3.02 KVAR PF = cos(angle(S)) % Power Factor 0.829    Problem 2‐8. A single‐phase motor draws 5kW at a power factor of 0.88 when 230V is applied. 

(a) Calculate the apparent and reactive power drawn by the motor and the power factor angle. (b) Draw the power triangle. (c) Calculate the current drawn by the motor. 

Solution: 

Page 8: AC - IPFWlin/ECET211/spring2013/1-Lectures/ECET-211...AC Circuits (steady state) ... Using sin(377t) as the reference vector ... P = 11.948 KW, Q = 20.695 KVAR ...

%ecet211_prob2_8.m % Paul Lin P = 5000; % 5KW PF = 0.88 % cos(theta) V = 230; theta = acos(PF) % 0.4949 radians % S = P + jQ = S*cos(theta) + j*S*sin(theta) % from P = S*cos(theta) = S*PF % OR from Power TRiangle % Q = SQRT(S^2 - P^2) % Part (a): S = P/PF % 5.68 KVA Q = S*sin(theta) % 2.70 KVAR % Part (b) Draw Power Traingle % % Part (c) Current drawn by the motor Imotor = S/V % 24.7 amperes