-8cm Zeros and critical points of monochromatic random...

65
Zeros and critical points of monochromatic random waves 06-18-2018 Yaiza Canzani

Transcript of -8cm Zeros and critical points of monochromatic random...

Page 1: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Zeros and critical pointsof monochromatic random waves

06-18-2018 Yaiza Canzani

Page 2: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

The setting: (Mn, g) compact Riemannian manifold, ∂M = ∅

Classical Quantum

states T∗M L2(M)

hamiltonian |ξ|2g(x)

∆g

time evolution geodesic flow eiht√

∆g

steady states closed geodesics eigenfunctions ψλj

Page 3: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

The setting: (Mn, g) compact Riemannian manifold, ∂M = ∅

Classical Quantum

states T∗M L2(M)

hamiltonian |ξ|2g(x)

∆g

time evolution geodesic flow eiht√

∆g

steady states closed geodesics eigenfunctions ψλj

Page 4: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

The setting: (Mn, g) compact Riemannian manifold, ∂M = ∅

Classical Quantum

states T∗M L2(M)

hamiltonian |ξ|2g(x)

∆g

time evolution geodesic flow eiht√

∆g

steady states closed geodesics eigenfunctions ψλj

Page 5: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

The setting: (Mn, g) compact Riemannian manifold, ∂M = ∅

Classical Quantum

states T∗M L2(M)

hamiltonian |ξ|2g(x)

∆g

time evolution geodesic flow eiht√

∆g

steady states closed geodesics eigenfunctions ψλj

Page 6: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

The setting: (Mn, g) compact Riemannian manifold, ∂M = ∅

Classical Quantum

states T∗M L2(M)

hamiltonian |ξ|2g(x)

∆g

time evolution geodesic flow eiht√

∆g

steady states closed geodesics eigenfunctions ψλj

Page 7: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

The setting: (Mn, g) compact Riemannian manifold, ∂M = ∅

Classical Quantum

states T∗M L2(M)

hamiltonian |ξ|2g(x)

∆g

time evolution geodesic flow eiht√

∆g

steady states closed geodesics eigenfunctions ψλj

Page 8: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

The setting: (Mn, g) compact Riemannian manifold, ∂M = ∅

Classical Quantum

states T∗M L2(M)

hamiltonian |ξ|2g(x)

∆g

time evolution geodesic flow eiht√

∆g

steady states closed geodesics eigenfunctions ψλj

Page 9: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

The setting: (Mn, g) compact Riemannian manifold, ∂M = ∅

Classical Quantum

states T∗M L2(M)

hamiltonian |ξ|2g(x)

∆g

time evolution geodesic flow eiht√

∆g

steady states closed geodesics eigenfunctions ψλj

Page 10: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Questions

•#critical points of Ψλ

λn

p−→ An

• S2 Nicolaescu ’10

Cammarota-Marinucci-Wigman ’14

Cammarota-Wigman ’15

• (M, g)∗ C-Hanin ’17

•measure(ZΨλ )

λ

p−→ Bn

• S2 Neuheisel ’00, Wigman ’09, ’10

•T2 Rudnick-Wigman ’07

• (M, g)∗ C-Hanin ’17

•#

components of ZΨλ

λn

E−→ Cn• Sn,Tn Nazarov-Sodin ’07 ,’16

• (M, g)∗ Nazarov-Sodin ’15 + C-Hanin ’16

• topologies & nestings in ZΨλ

• Sn,Tn Sarnak-Wigman ’17 + C-Hanin ’16

C-Sarnak ’17 + C-Hanin ’16

Page 11: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Questions

•#critical points of Ψλ

λnp−→ An

• S2 Nicolaescu ’10

Cammarota-Marinucci-Wigman ’14

Cammarota-Wigman ’15

• (M, g)∗ C-Hanin ’17

•measure(ZΨλ )

λ

p−→ Bn

• S2 Neuheisel ’00, Wigman ’09, ’10

•T2 Rudnick-Wigman ’07

• (M, g)∗ C-Hanin ’17

•#

components of ZΨλ

λn

E−→ Cn• Sn,Tn Nazarov-Sodin ’07 ,’16

• (M, g)∗ Nazarov-Sodin ’15 + C-Hanin ’16

• topologies & nestings in ZΨλ

• Sn,Tn Sarnak-Wigman ’17 + C-Hanin ’16

C-Sarnak ’17 + C-Hanin ’16

Page 12: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Questions

•#critical points of Ψλ

λnp−→ An

• S2 Nicolaescu ’10

Cammarota-Marinucci-Wigman ’14

Cammarota-Wigman ’15

• (M, g)∗ C-Hanin ’17

•measure(ZΨλ )

λ

p−→ Bn

• S2 Neuheisel ’00, Wigman ’09, ’10

•T2 Rudnick-Wigman ’07

• (M, g)∗ C-Hanin ’17

•#

components of ZΨλ

λn

E−→ Cn• Sn,Tn Nazarov-Sodin ’07 ,’16

• (M, g)∗ Nazarov-Sodin ’15 + C-Hanin ’16

• topologies & nestings in ZΨλ

• Sn,Tn Sarnak-Wigman ’17 + C-Hanin ’16

C-Sarnak ’17 + C-Hanin ’16

Page 13: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Questions

•#critical points of Ψλ

λnp−→ An

• S2 Nicolaescu ’10

Cammarota-Marinucci-Wigman ’14

Cammarota-Wigman ’15

• (M, g)∗ C-Hanin ’17

•measure(ZΨλ )

λ

p−→ Bn

• S2 Neuheisel ’00, Wigman ’09, ’10

•T2 Rudnick-Wigman ’07

• (M, g)∗ C-Hanin ’17

•#

components of ZΨλ

λn

E−→ Cn• Sn,Tn Nazarov-Sodin ’07 ,’16

• (M, g)∗ Nazarov-Sodin ’15 + C-Hanin ’16

• topologies & nestings in ZΨλ

• Sn,Tn Sarnak-Wigman ’17 + C-Hanin ’16

C-Sarnak ’17 + C-Hanin ’16

Page 14: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Questions

•#critical points of Ψλ

λnp−→ An

• S2 Nicolaescu ’10

Cammarota-Marinucci-Wigman ’14

Cammarota-Wigman ’15

• (M, g)∗ C-Hanin ’17

•measure(ZΨλ )

λ

p−→ Bn

• S2 Neuheisel ’00, Wigman ’09, ’10

•T2 Rudnick-Wigman ’07

• (M, g)∗ C-Hanin ’17

•#

components of ZΨλ

λn

E−→ Cn• Sn,Tn Nazarov-Sodin ’07 ,’16

• (M, g)∗ Nazarov-Sodin ’15 + C-Hanin ’16

• topologies & nestings in ZΨλ

• Sn,Tn Sarnak-Wigman ’17 + C-Hanin ’16

C-Sarnak ’17 + C-Hanin ’16

Page 15: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Questions

•#critical points of Ψλ

λnp−→ An

• S2 Nicolaescu ’10

Cammarota-Marinucci-Wigman ’14

Cammarota-Wigman ’15

• (M, g)∗ C-Hanin ’17

•measure(ZΨλ )

λ

p−→ Bn

• S2 Neuheisel ’00, Wigman ’09, ’10

•T2 Rudnick-Wigman ’07

• (M, g)∗ C-Hanin ’17

•#

components of ZΨλ

λn

E−→ Cn• Sn,Tn Nazarov-Sodin ’07 ,’16

• (M, g)∗ Nazarov-Sodin ’15 + C-Hanin ’16

• topologies & nestings in ZΨλ

• Sn,Tn Sarnak-Wigman ’17

+ C-Hanin ’16

C-Sarnak ’17

+ C-Hanin ’16

Page 16: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Random waves: Ψλ = 1

(#λj =λ)1/2

∑λj =λ

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) = E(Ψλ(x)Ψλ(y)) =1

#λj = λ∑λj=λ

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

LemmaLet x0 ∈ Sn or Tn. Then,

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

Ψ∞ : Rn → R is a Gaussian field with

CovΨ∞ (u, v) =1

(2π)n

∫Sn−1

e i〈u−v,w〉dσSn−1 (w)

Heuristics: (∆Rn + lot) Ψx0λ = Ψx0

λ and ∆RnΨ∞ = Ψ∞.

Page 17: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Random waves: Ψλ = 1

(#λj =λ)1/2

∑λj =λ

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) = E(Ψλ(x)Ψλ(y)) =1

#λj = λ∑λj=λ

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

LemmaLet x0 ∈ Sn or Tn. Then,

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

Ψ∞ : Rn → R is a Gaussian field with

CovΨ∞ (u, v) =1

(2π)n

∫Sn−1

e i〈u−v,w〉dσSn−1 (w)

Heuristics: (∆Rn + lot) Ψx0λ = Ψx0

λ and ∆RnΨ∞ = Ψ∞.

Page 18: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Random waves: Ψλ = 1

(#λj =λ)1/2

∑λj =λ

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) = E(Ψλ(x)Ψλ(y)) =1

#λj = λ∑λj=λ

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

LemmaLet x0 ∈ Sn or Tn. Then,

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

Ψ∞ : Rn → R is a Gaussian field with

CovΨ∞ (u, v) =1

(2π)n

∫Sn−1

e i〈u−v,w〉dσSn−1 (w)

Heuristics: (∆Rn + lot) Ψx0λ = Ψx0

λ and ∆RnΨ∞ = Ψ∞.

Page 19: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Random waves: Ψλ = 1

(#λj =λ)1/2

∑λj =λ

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) = E(Ψλ(x)Ψλ(y)) =1

#λj = λ∑λj=λ

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

LemmaLet x0 ∈ Sn or Tn. Then,

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

Ψ∞ : Rn → R is a Gaussian field with

CovΨ∞ (u, v) =1

(2π)n

∫Sn−1

e i〈u−v,w〉dσSn−1 (w)

Heuristics: (∆Rn + lot) Ψx0λ = Ψx0

λ and ∆RnΨ∞ = Ψ∞.

Page 20: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Random waves: Ψλ = 1

(#λj =λ)1/2

∑λj =λ

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) = E(Ψλ(x)Ψλ(y)) =1

#λj = λ∑λj=λ

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

LemmaLet x0 ∈ Sn or Tn. Then,

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

Ψ∞ : Rn → R is a Gaussian field with

CovΨ∞ (u, v) =1

(2π)n

∫Sn−1

e i〈u−v,w〉dσSn−1 (w)

Heuristics: (∆Rn + lot) Ψx0λ = Ψx0

λ and ∆RnΨ∞ = Ψ∞.

Page 21: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Random waves: Ψλ = 1

(#λj =λ)1/2

∑λj =λ

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) = E(Ψλ(x)Ψλ(y)) =1

#λj = λ∑λj=λ

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

LemmaLet x0 ∈ Sn or Tn. Then,

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

Ψ∞ : Rn → R is a Gaussian field with

CovΨ∞ (u, v) =1

(2π)n

∫Sn−1

e i〈u−v,w〉dσSn−1 (w)

Heuristics: (∆Rn + lot) Ψx0λ = Ψx0

λ and ∆RnΨ∞ = Ψ∞.

Page 22: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Universality. Ψλ = 1

(#λj∈[λ,λ+1))1/2

∑λj∈[λ,λ+1)

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) =1

#λj ∈ [λ, λ+ 1)∑

λj∈[λ,λ+1)

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

Theorem (C-Hanin ’15, ’16)

Let x0 ∈ M. If measuregeodesic loops closing at x0= 0, then

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

i.e, we get

Ψx0λ (u)

d−→ Ψ∞(u).

Random wave conjecture:

ψx0λ (u) has same statistics as Ψ∞(u).

Page 23: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Universality. Ψλ = 1

(#λj∈[λ,λ+1))1/2

∑λj∈[λ,λ+1)

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) =1

#λj ∈ [λ, λ+ 1)∑

λj∈[λ,λ+1)

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

Theorem (C-Hanin ’15, ’16)

Let x0 ∈ M. If measuregeodesic loops closing at x0= 0, then

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

i.e, we get

Ψx0λ (u)

d−→ Ψ∞(u).

Random wave conjecture:

ψx0λ (u) has same statistics as Ψ∞(u).

Page 24: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Universality. Ψλ = 1

(#λj∈[λ,λ+1))1/2

∑λj∈[λ,λ+1)

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) =1

#λj ∈ [λ, λ+ 1)∑

λj∈[λ,λ+1)

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

Theorem (C-Hanin ’15, ’16)

Let x0 ∈ M. If measuregeodesic loops closing at x0= 0, then

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

i.e, we get

Ψx0λ (u)

d−→ Ψ∞(u).

Random wave conjecture:

ψx0λ (u) has same statistics as Ψ∞(u).

Page 25: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Universality. Ψλ = 1

(#λj∈[λ,λ+1))1/2

∑λj∈[λ,λ+1)

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) =1

#λj ∈ [λ, λ+ 1)∑

λj∈[λ,λ+1)

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

Theorem (C-Hanin ’15, ’16)

Let x0 ∈ M. If measuregeodesic loops closing at x0= 0, then

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

i.e, we get

Ψx0λ (u)

d−→ Ψ∞(u).

Random wave conjecture:

ψx0λ (u) has same statistics as Ψ∞(u).

Page 26: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Universality. Ψλ = 1

(#λj∈[λ,λ+1))1/2

∑λj∈[λ,λ+1)

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) =1

#λj ∈ [λ, λ+ 1)∑

λj∈[λ,λ+1)

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

Theorem (C-Hanin ’15, ’16)

Let x0 ∈ M. If measuregeodesic loops closing at x0= 0, then

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

i.e, we get

Ψx0λ (u)

d−→ Ψ∞(u).

Random wave conjecture:

ψx0λ (u) has same statistics as Ψ∞(u).

Page 27: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Universality. Ψλ = 1

(#λj∈[λ,λ+1))1/2

∑λj∈[λ,λ+1)

aj ψλj aj ∼ N(0, 1) iid

CovΨλ (x , y) =1

#λj ∈ [λ, λ+ 1)∑

λj∈[λ,λ+1)

ψλj(x)ψλj

(y)

LetΨx0λ (u) := Ψλ

(x0 + u

λ

).

Theorem (C-Hanin ’15, ’16)

Let x0 ∈ M. If measuregeodesic loops closing at x0= 0, then

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v),

uniformly in u, v ∈ B(0,R) in the C∞-topology.

i.e, we get

Ψx0λ (u)

d−→ Ψ∞(u).

Random wave conjecture:

ψx0λ (u) has same statistics as Ψ∞(u).

Page 28: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Prior results and today’s talk

•#critical points of Ψλ

λnp−→ An

• S2 Nicolaescu ’10

Cammarota-Marinucci-Wigman ’14

Cammarota-Wigman ’15

• (M, g)∗ C-Hanin ’17

•measure(ZΨλ )

λ

p−→ Bn

• S2 Neuheisel ’00, Wigman ’09, ’10

•T2 Rudnick-Wigman ’07

• (M, g)∗ C-Hanin ’17

•#

components of ZΨλ

λn

E−→ Cn• Sn,Tn Nazarov-Sodin ’07 ,’16

• (M, g)∗ Nazarov-Sodin ’15 + C-Hanin ’16

• topologies & nestings in ZΨλ

• Sn,Tn Sarnak-Wigman ’17

+ C-Hanin ’16

C-Sarnak ’17

+ C-Hanin ’16

Page 29: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Prior results and today’s talk

•#critical points of Ψλ

λnp−→ An

• S2 Nicolaescu ’10

Cammarota-Marinucci-Wigman ’14

Cammarota-Wigman ’15

• (M, g)∗ C-Hanin ’17

•measure(ZΨλ )

λ

p−→ Bn

• S2 Neuheisel ’00, Wigman ’09, ’10

•T2 Rudnick-Wigman ’07

• (M, g)∗ C-Hanin ’17

•#

components of ZΨλ

λn

E−→ Cn• Sn,Tn Nazarov-Sodin ’07 ,’16

• (M, g)∗ Nazarov-Sodin ’16 + C-Hanin ’15’16

• topologies & nestings in ZΨλ

• (M, g)∗ Sarnak-Wigman ’17 + C-Hanin ’15’16

C-Sarnak ’17 + C-Hanin ’15’16

Page 30: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Prior results and today’s talk

•#critical points of Ψλ

λnp−→ An

• S2 Nicolaescu ’10

Cammarota-Marinucci-Wigman ’14

Cammarota-Wigman ’15

• (M, g)∗ C-Hanin ’17

•measure(ZΨλ )

λ

p−→ Bn

• S2 Neuheisel ’00, Wigman ’09, ’10

•T2 Rudnick-Wigman ’07

• (M, g)∗ C-Hanin ’17

•#

components of ZΨλ

λn

E−→ Cn• Sn,Tn Nazarov-Sodin ’07 ,’16

• (M, g)∗ Nazarov-Sodin ’16 + C-Hanin ’15’16

• topologies & nestings in ZΨλ

• (M, g)∗ Sarnak-Wigman ’17 + C-Hanin ’15’16

C-Sarnak ’17 + C-Hanin ’15’16

Page 31: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Prior results and today’s talk

•#critical points of Ψλ

λnp−→ An

• S2 Nicolaescu ’10

Cammarota-Marinucci-Wigman ’14

Cammarota-Wigman ’15

• (M, g)∗ C-Hanin ’17

•measure(ZΨλ )

λ

p−→ Bn

• S2 Neuheisel ’00, Wigman ’09, ’10

•T2 Rudnick-Wigman ’07

• (M, g)∗ C-Hanin ’17

•#

components of ZΨλ

λn

E−→ Cn• Sn,Tn Nazarov-Sodin ’07 ,’16

• (M, g)∗ Nazarov-Sodin ’16 + C-Hanin ’15’16

• topologies & nestings in ZΨλ

• (M, g)∗ Sarnak-Wigman ’17 + C-Hanin ’15’16

C-Sarnak ’17 + C-Hanin ’15’16

Page 32: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Prior results and today’s talk

•#critical points of Ψλ

λnp−→ An

• S2 Nicolaescu ’10

Cammarota-Marinucci-Wigman ’14

Cammarota-Wigman ’15

• (M, g)∗ C-Hanin ’17

•measure(ZΨλ )

λ

p−→ Bn

• S2 Neuheisel ’00, Wigman ’09, ’10

•T2 Rudnick-Wigman ’07

• (M, g)∗ C-Hanin ’17

•#

components of ZΨλ

λn

E−→ Cn• Sn,Tn Nazarov-Sodin ’07 ,’16

• (M, g)∗ Nazarov-Sodin ’16 + C-Hanin ’15’16

• topologies & nestings in ZΨλ

• (M, g)∗ Sarnak-Wigman ’17 + C-Hanin ’15’16

C-Sarnak ’17 + C-Hanin ’15’16

Page 33: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Zero set Ψ∞ = 0 for n = 3

Page 34: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Universality and Almost sure convergence

Uniformly in u, v ∈ B(0,R), and in the C∞-topology,

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v).

• (Ψx0λ ,∇Ψx0

λ ) has finite-dimensional dist. that converge to those of (Ψ∞,∇Ψ∞).

• The family of probability measures µx0λ associated to (Ψx0

λ ,∇Ψx0λ ) is tight (by

Kolmogorov’s tightness criterion; since the fields are smooth).

• Prokhorov’s Theorem:µx0λ → µ∞ weakly.

• Skorohod’s Representation Theorem: there exists a coupling of (Ψx0λ ,∇Ψx0

λ )λand (Ψ∞,∇Ψ∞) so that

(Ψx0λ ,∇Ψx0

λ ) −→ (Ψ∞,∇Ψ∞) a.s

Page 35: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Universality and Almost sure convergence

Uniformly in u, v ∈ B(0,R), and in the C∞-topology,

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v).

• (Ψx0λ ,∇Ψx0

λ ) has finite-dimensional dist. that converge to those of (Ψ∞,∇Ψ∞).

• The family of probability measures µx0λ associated to (Ψx0

λ ,∇Ψx0λ ) is tight (by

Kolmogorov’s tightness criterion; since the fields are smooth).

• Prokhorov’s Theorem:µx0λ → µ∞ weakly.

• Skorohod’s Representation Theorem: there exists a coupling of (Ψx0λ ,∇Ψx0

λ )λand (Ψ∞,∇Ψ∞) so that

(Ψx0λ ,∇Ψx0

λ ) −→ (Ψ∞,∇Ψ∞) a.s

Page 36: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Universality and Almost sure convergence

Uniformly in u, v ∈ B(0,R), and in the C∞-topology,

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v).

• (Ψx0λ ,∇Ψx0

λ ) has finite-dimensional dist. that converge to those of (Ψ∞,∇Ψ∞).

• The family of probability measures µx0λ associated to (Ψx0

λ ,∇Ψx0λ ) is tight (by

Kolmogorov’s tightness criterion; since the fields are smooth).

• Prokhorov’s Theorem:µx0λ → µ∞ weakly.

• Skorohod’s Representation Theorem: there exists a coupling of (Ψx0λ ,∇Ψx0

λ )λand (Ψ∞,∇Ψ∞) so that

(Ψx0λ ,∇Ψx0

λ ) −→ (Ψ∞,∇Ψ∞) a.s

Page 37: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Universality and Almost sure convergence

Uniformly in u, v ∈ B(0,R), and in the C∞-topology,

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v).

• (Ψx0λ ,∇Ψx0

λ ) has finite-dimensional dist. that converge to those of (Ψ∞,∇Ψ∞).

• The family of probability measures µx0λ associated to (Ψx0

λ ,∇Ψx0λ ) is tight (by

Kolmogorov’s tightness criterion; since the fields are smooth).

• Prokhorov’s Theorem:µx0λ → µ∞ weakly.

• Skorohod’s Representation Theorem: there exists a coupling of (Ψx0λ ,∇Ψx0

λ )λand (Ψ∞,∇Ψ∞) so that

(Ψx0λ ,∇Ψx0

λ ) −→ (Ψ∞,∇Ψ∞) a.s

Page 38: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Universality and Almost sure convergence

Uniformly in u, v ∈ B(0,R), and in the C∞-topology,

limλ→∞

CovΨx0λ

(u, v) = CovΨ∞ (u, v).

• (Ψx0λ ,∇Ψx0

λ ) has finite-dimensional dist. that converge to those of (Ψ∞,∇Ψ∞).

• The family of probability measures µx0λ associated to (Ψx0

λ ,∇Ψx0λ ) is tight (by

Kolmogorov’s tightness criterion; since the fields are smooth).

• Prokhorov’s Theorem:µx0λ → µ∞ weakly.

• Skorohod’s Representation Theorem: there exists a coupling of (Ψx0λ ,∇Ψx0

λ )λand (Ψ∞,∇Ψ∞) so that

(Ψx0λ ,∇Ψx0

λ ) −→ (Ψ∞,∇Ψ∞) a.s

Page 39: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Zero sets in 1λ scales

• Obs. We have

(Ψx0λ ,∇Ψx0

λ )→ (Ψ∞,∇Ψ∞) a.s. in B(0,R).

• Obs. The zero set f = 0 is stable under perturbations for all f ∈ C1(B(0,R)).

Theorem (C-Hanin ’17)

Let x0 ∈ M. If measuregeodesic loops closing at x0= 0,

δΨx0λ

=0d−→ δΨ∞=0.

In particular,

Hn−1(Ψx0λ = 0) d−→ Hn−1(Ψ∞ = 0).

Same is true for Euler characteristic, Betti numbers, and topologies of components.

Page 40: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Zero sets in 1λ scales

• Obs. We have

(Ψx0λ ,∇Ψx0

λ )→ (Ψ∞,∇Ψ∞) a.s. in B(0,R).

• Obs. The zero set f = 0 is stable under perturbations for all f ∈ C1(B(0,R)).

Theorem (C-Hanin ’17)

Let x0 ∈ M. If measuregeodesic loops closing at x0= 0,

δΨx0λ

=0d−→ δΨ∞=0.

In particular,

Hn−1(Ψx0λ = 0) d−→ Hn−1(Ψ∞ = 0).

Same is true for Euler characteristic, Betti numbers, and topologies of components.

Page 41: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Zero sets in 1λ scales

• Obs. We have

(Ψx0λ ,∇Ψx0

λ )→ (Ψ∞,∇Ψ∞) a.s. in B(0,R).

• Obs. The zero set f = 0 is stable under perturbations for all f ∈ C1(B(0,R)).

Theorem (C-Hanin ’17)

Let x0 ∈ M. If measuregeodesic loops closing at x0= 0,

δΨx0λ

=0d−→ δΨ∞=0.

In particular,

Hn−1(Ψx0λ = 0) d−→ Hn−1(Ψ∞ = 0).

Same is true for Euler characteristic, Betti numbers, and topologies of components.

Page 42: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Zero sets in 1λ scales

• Obs. We have

(Ψx0λ ,∇Ψx0

λ )→ (Ψ∞,∇Ψ∞) a.s. in B(0,R).

• Obs. The zero set f = 0 is stable under perturbations for all f ∈ C1(B(0,R)).

Theorem (C-Hanin ’17)

Let x0 ∈ M. If measuregeodesic loops closing at x0= 0,

δΨx0λ

=0d−→ δΨ∞=0.

In particular,

Hn−1(Ψx0λ = 0) d−→ Hn−1(Ψ∞ = 0).

Same is true for Euler characteristic, Betti numbers, and topologies of components.

Page 43: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Zero sets in 1λ scales

• Obs. We have

(Ψx0λ ,∇Ψx0

λ )→ (Ψ∞,∇Ψ∞) a.s. in B(0,R).

• Obs. The zero set f = 0 is stable under perturbations for all f ∈ C1(B(0,R)).

Theorem (C-Hanin ’17)

Let x0 ∈ M. If measuregeodesic loops closing at x0= 0,

δΨx0λ

=0d−→ δΨ∞=0.

In particular,

Hn−1(Ψx0λ = 0) d−→ Hn−1(Ψ∞ = 0).

Same is true for Euler characteristic, Betti numbers, and topologies of components.

Page 44: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Critical points in 1λ scales

CritΨx0λ

:=1

Vol(BR)

∑dΨ

x0λ

(u)=0

u∈BR

δu

• Obs. We can’t apply previous argument since critical points are not stable underpertubations.

Theorem (C-Hanin ’17)

Let x0 ∈ M with measuregeodesic loops closing at x0= 0. For every m ∈ N

limλ→∞

E[Crit

Ψx0λ

]m= E [CritΨ∞ ]m

provided the limit is finite, which is true for m = 1, 2.

Page 45: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Critical points in 1λ scales

CritΨx0λ

:=1

Vol(BR)

∑dΨ

x0λ

(u)=0

u∈BR

δu

• Obs. We can’t apply previous argument since critical points are not stable underpertubations.

Theorem (C-Hanin ’17)

Let x0 ∈ M with measuregeodesic loops closing at x0= 0. For every m ∈ N

limλ→∞

E[Crit

Ψx0λ

]m= E [CritΨ∞ ]m

provided the limit is finite, which is true for m = 1, 2.

Page 46: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Critical points in 1λ scales

CritΨx0λ

:=1

Vol(BR)

∑dΨ

x0λ

(u)=0

u∈BR

δu

• Obs. We can’t apply previous argument since critical points are not stable underpertubations.

Theorem (C-Hanin ’17)

Let x0 ∈ M with measuregeodesic loops closing at x0= 0. For every m ∈ N

limλ→∞

E[Crit

Ψx0λ

]m= E [CritΨ∞ ]m

provided the limit is finite, which is true for m = 1, 2.

Page 47: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Critical points in 1λ scales: ideas in the proof

Theorem (Kac-Rice)

Suppose that

1 ∇Ψ is almost surely C2.

2 Non-degeneracy: For every u 6= v the Gaussian vector (∇Ψ(u),∇Ψ(v)) has anon-degenerate distribution.

Then,

E [CritΨ(CritΨ−1)] =

∫B×B

Y∇Ψ (u, v)Den(∇Ψ(u),∇Ψ(v))

(0, 0)dudv

where

Y∇Ψ (u, v) = E[|det(Hess Ψ(u))| |det(Hess Ψ(v))|

∣∣∣∇Ψ(u) = ∇Ψ(v) = 0]

and Den(∇Ψ(u),∇Ψ(v))

(0, 0) is the density of (∇Ψ(u),∇Ψ(v)) evaluated at (0, 0).

Page 48: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Critical points in 1λ scales: ideas in the proof

Goal:E[Crit

Ψx0λ

(CritΨx0λ−1)

]−→ E [CritΨ∞ (CritΨ∞ −1)]

1 Non-degeneracy: If u 6= v , then (∇Ψ∞(u),∇Ψ∞(v)) is non-degenerate.Reduced to proving that

ωjei〈u,ω〉, ωke

i〈v,ω〉 : j , k = 1, . . . , n are l.i. on Sn−1.

2 Non-degeneracy of (∇Ψx0λ (u),∇Ψx0

λ (v)). Use non-degeneracy for Ψ∞ to dealwith off-diagonal behavior. Use universality to deal with on-diagonal behavior.

3 Non-dengeneracy + universality of CovΨx0λ

imply

Den(∇Ψ

x0λ

(u),∇Ψx0λ

(v))(0, 0) −→ Den

(∇Ψ∞(u),∇Ψ∞(v))(0, 0) a.e. (u, v)

4 One can also show that Y x0m,λ is continuous and

YΨx0λ

(u, v) −→ YΨ∞ (u, v) a.e. (u, v)

5 Prove that as |u − v | → 0

Den(∇Ψ∞(u),∇Ψ∞(v))

(0, 0) = O(|u − v |−n), YΨ∞ (u, v) = O(|u − v |2).

Page 49: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Critical points in 1λ scales: ideas in the proof

Goal:E[Crit

Ψx0λ

(CritΨx0λ−1)

]−→ E [CritΨ∞ (CritΨ∞ −1)]

1 Non-degeneracy: If u 6= v , then (∇Ψ∞(u),∇Ψ∞(v)) is non-degenerate.

Reduced to proving that

ωjei〈u,ω〉, ωke

i〈v,ω〉 : j , k = 1, . . . , n are l.i. on Sn−1.

2 Non-degeneracy of (∇Ψx0λ (u),∇Ψx0

λ (v)). Use non-degeneracy for Ψ∞ to dealwith off-diagonal behavior. Use universality to deal with on-diagonal behavior.

3 Non-dengeneracy + universality of CovΨx0λ

imply

Den(∇Ψ

x0λ

(u),∇Ψx0λ

(v))(0, 0) −→ Den

(∇Ψ∞(u),∇Ψ∞(v))(0, 0) a.e. (u, v)

4 One can also show that Y x0m,λ is continuous and

YΨx0λ

(u, v) −→ YΨ∞ (u, v) a.e. (u, v)

5 Prove that as |u − v | → 0

Den(∇Ψ∞(u),∇Ψ∞(v))

(0, 0) = O(|u − v |−n), YΨ∞ (u, v) = O(|u − v |2).

Page 50: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Critical points in 1λ scales: ideas in the proof

Goal:E[Crit

Ψx0λ

(CritΨx0λ−1)

]−→ E [CritΨ∞ (CritΨ∞ −1)]

1 Non-degeneracy: If u 6= v , then (∇Ψ∞(u),∇Ψ∞(v)) is non-degenerate.Reduced to proving that

ωjei〈u,ω〉, ωke

i〈v,ω〉 : j , k = 1, . . . , n are l.i. on Sn−1.

2 Non-degeneracy of (∇Ψx0λ (u),∇Ψx0

λ (v)). Use non-degeneracy for Ψ∞ to dealwith off-diagonal behavior. Use universality to deal with on-diagonal behavior.

3 Non-dengeneracy + universality of CovΨx0λ

imply

Den(∇Ψ

x0λ

(u),∇Ψx0λ

(v))(0, 0) −→ Den

(∇Ψ∞(u),∇Ψ∞(v))(0, 0) a.e. (u, v)

4 One can also show that Y x0m,λ is continuous and

YΨx0λ

(u, v) −→ YΨ∞ (u, v) a.e. (u, v)

5 Prove that as |u − v | → 0

Den(∇Ψ∞(u),∇Ψ∞(v))

(0, 0) = O(|u − v |−n), YΨ∞ (u, v) = O(|u − v |2).

Page 51: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Critical points in 1λ scales: ideas in the proof

Goal:E[Crit

Ψx0λ

(CritΨx0λ−1)

]−→ E [CritΨ∞ (CritΨ∞ −1)]

1 Non-degeneracy: If u 6= v , then (∇Ψ∞(u),∇Ψ∞(v)) is non-degenerate.Reduced to proving that

ωjei〈u,ω〉, ωke

i〈v,ω〉 : j , k = 1, . . . , n are l.i. on Sn−1.

2 Non-degeneracy of (∇Ψx0λ (u),∇Ψx0

λ (v)). Use non-degeneracy for Ψ∞ to dealwith off-diagonal behavior. Use universality to deal with on-diagonal behavior.

3 Non-dengeneracy + universality of CovΨx0λ

imply

Den(∇Ψ

x0λ

(u),∇Ψx0λ

(v))(0, 0) −→ Den

(∇Ψ∞(u),∇Ψ∞(v))(0, 0) a.e. (u, v)

4 One can also show that Y x0m,λ is continuous and

YΨx0λ

(u, v) −→ YΨ∞ (u, v) a.e. (u, v)

5 Prove that as |u − v | → 0

Den(∇Ψ∞(u),∇Ψ∞(v))

(0, 0) = O(|u − v |−n), YΨ∞ (u, v) = O(|u − v |2).

Page 52: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Critical points in 1λ scales: ideas in the proof

Goal:E[Crit

Ψx0λ

(CritΨx0λ−1)

]−→ E [CritΨ∞ (CritΨ∞ −1)]

1 Non-degeneracy: If u 6= v , then (∇Ψ∞(u),∇Ψ∞(v)) is non-degenerate.Reduced to proving that

ωjei〈u,ω〉, ωke

i〈v,ω〉 : j , k = 1, . . . , n are l.i. on Sn−1.

2 Non-degeneracy of (∇Ψx0λ (u),∇Ψx0

λ (v)). Use non-degeneracy for Ψ∞ to dealwith off-diagonal behavior. Use universality to deal with on-diagonal behavior.

3 Non-dengeneracy + universality of CovΨx0λ

imply

Den(∇Ψ

x0λ

(u),∇Ψx0λ

(v))(0, 0) −→ Den

(∇Ψ∞(u),∇Ψ∞(v))(0, 0) a.e. (u, v)

4 One can also show that Y x0m,λ is continuous and

YΨx0λ

(u, v) −→ YΨ∞ (u, v) a.e. (u, v)

5 Prove that as |u − v | → 0

Den(∇Ψ∞(u),∇Ψ∞(v))

(0, 0) = O(|u − v |−n), YΨ∞ (u, v) = O(|u − v |2).

Page 53: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Critical points in 1λ scales: ideas in the proof

Goal:E[Crit

Ψx0λ

(CritΨx0λ−1)

]−→ E [CritΨ∞ (CritΨ∞ −1)]

1 Non-degeneracy: If u 6= v , then (∇Ψ∞(u),∇Ψ∞(v)) is non-degenerate.Reduced to proving that

ωjei〈u,ω〉, ωke

i〈v,ω〉 : j , k = 1, . . . , n are l.i. on Sn−1.

2 Non-degeneracy of (∇Ψx0λ (u),∇Ψx0

λ (v)). Use non-degeneracy for Ψ∞ to dealwith off-diagonal behavior. Use universality to deal with on-diagonal behavior.

3 Non-dengeneracy + universality of CovΨx0λ

imply

Den(∇Ψ

x0λ

(u),∇Ψx0λ

(v))(0, 0) −→ Den

(∇Ψ∞(u),∇Ψ∞(v))(0, 0) a.e. (u, v)

4 One can also show that Y x0m,λ is continuous and

YΨx0λ

(u, v) −→ YΨ∞ (u, v) a.e. (u, v)

5 Prove that as |u − v | → 0

Den(∇Ψ∞(u),∇Ψ∞(v))

(0, 0) = O(|u − v |−n), YΨ∞ (u, v) = O(|u − v |2).

Page 54: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Critical points in 1λ scales: ideas in the proof

Goal:E[Crit

Ψx0λ

(CritΨx0λ−1)

]−→ E [CritΨ∞ (CritΨ∞ −1)]

1 Non-degeneracy: If u 6= v , then (∇Ψ∞(u),∇Ψ∞(v)) is non-degenerate.Reduced to proving that

ωjei〈u,ω〉, ωke

i〈v,ω〉 : j , k = 1, . . . , n are l.i. on Sn−1.

2 Non-degeneracy of (∇Ψx0λ (u),∇Ψx0

λ (v)). Use non-degeneracy for Ψ∞ to dealwith off-diagonal behavior. Use universality to deal with on-diagonal behavior.

3 Non-dengeneracy + universality of CovΨx0λ

imply

Den(∇Ψ

x0λ

(u),∇Ψx0λ

(v))(0, 0) −→ Den

(∇Ψ∞(u),∇Ψ∞(v))(0, 0) a.e. (u, v)

4 One can also show that Y x0m,λ is continuous and

YΨx0λ

(u, v) −→ YΨ∞ (u, v) a.e. (u, v)

5 Prove that as |u − v | → 0

Den(∇Ψ∞(u),∇Ψ∞(v))

(0, 0) = O(|u − v |−n), YΨ∞ (u, v) = O(|u − v |2).

Page 55: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Global statistics

Theorem (C-Hanin’16)

If measuregeodesic loops closing at x= 0 for a.e x ∈ M, then

limλ

E[

#critical points of Ψλλn

]= An

limλ

E[Hn−1(Ψλ = 0)

λ

]= Bn

If measuregeodesics joining x , y = 0 for a.e. x , y ∈ M , then

Var

[#critical points of Ψλ

λn

]= O

(λ−

n−12

)Var

[Hn−1(Ψλ = 0)

λ

]= O

(λ−

n−12

)

Page 56: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Global statistics

Theorem (C-Hanin’16)

If measuregeodesic loops closing at x= 0 for a.e x ∈ M, then

limλ

E[

#critical points of Ψλλn

]= An

limλ

E[Hn−1(Ψλ = 0)

λ

]= Bn

If measuregeodesics joining x , y = 0 for a.e. x , y ∈ M , then

Var

[#critical points of Ψλ

λn

]= O

(λ−

n−12

)Var

[Hn−1(Ψλ = 0)

λ

]= O

(λ−

n−12

)

Page 57: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Ideas in the proof

• For the expected values: integrate the local estimates after splitting the manifoldinto small patches.

• For the variance: we need to integrate Kac-Rice’s integrand on M ×M:1 Split M ×M into two sets:

Ωλ :=⋃α

Bα,λ × Bα,λ and Ωcλ

2 Control Kac-Rice’s integrand on Ωλ using the local results.

3 Split Ωcλ into two sets:

Ωcλ ∩ Vλ and Ωc

λ ∩ Vλc

where

Vλ =

(x, y) ∈ M ×M : max

α,β∈0,1λ−α−β |∇αx ∇

βy Cov(Ψλ(x),Ψλ(y))| > λ

− n−14

.

4 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ using that

vol(Vλ) = O(λ−n−1

2 ).

5 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ

c by hand.

Page 58: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Ideas in the proof

• For the expected values: integrate the local estimates after splitting the manifoldinto small patches.

• For the variance: we need to integrate Kac-Rice’s integrand on M ×M:1 Split M ×M into two sets:

Ωλ :=⋃α

Bα,λ × Bα,λ and Ωcλ

2 Control Kac-Rice’s integrand on Ωλ using the local results.

3 Split Ωcλ into two sets:

Ωcλ ∩ Vλ and Ωc

λ ∩ Vλc

where

Vλ =

(x, y) ∈ M ×M : max

α,β∈0,1λ−α−β |∇αx ∇

βy Cov(Ψλ(x),Ψλ(y))| > λ

− n−14

.

4 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ using that

vol(Vλ) = O(λ−n−1

2 ).

5 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ

c by hand.

Page 59: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Ideas in the proof

• For the expected values: integrate the local estimates after splitting the manifoldinto small patches.

• For the variance: we need to integrate Kac-Rice’s integrand on M ×M:

1 Split M ×M into two sets:

Ωλ :=⋃α

Bα,λ × Bα,λ and Ωcλ

2 Control Kac-Rice’s integrand on Ωλ using the local results.

3 Split Ωcλ into two sets:

Ωcλ ∩ Vλ and Ωc

λ ∩ Vλc

where

Vλ =

(x, y) ∈ M ×M : max

α,β∈0,1λ−α−β |∇αx ∇

βy Cov(Ψλ(x),Ψλ(y))| > λ

− n−14

.

4 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ using that

vol(Vλ) = O(λ−n−1

2 ).

5 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ

c by hand.

Page 60: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Ideas in the proof

• For the expected values: integrate the local estimates after splitting the manifoldinto small patches.

• For the variance: we need to integrate Kac-Rice’s integrand on M ×M:1 Split M ×M into two sets:

Ωλ :=⋃α

Bα,λ × Bα,λ and Ωcλ

2 Control Kac-Rice’s integrand on Ωλ using the local results.

3 Split Ωcλ into two sets:

Ωcλ ∩ Vλ and Ωc

λ ∩ Vλc

where

Vλ =

(x, y) ∈ M ×M : max

α,β∈0,1λ−α−β |∇αx ∇

βy Cov(Ψλ(x),Ψλ(y))| > λ

− n−14

.

4 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ using that

vol(Vλ) = O(λ−n−1

2 ).

5 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ

c by hand.

Page 61: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Ideas in the proof

• For the expected values: integrate the local estimates after splitting the manifoldinto small patches.

• For the variance: we need to integrate Kac-Rice’s integrand on M ×M:1 Split M ×M into two sets:

Ωλ :=⋃α

Bα,λ × Bα,λ and Ωcλ

2 Control Kac-Rice’s integrand on Ωλ using the local results.

3 Split Ωcλ into two sets:

Ωcλ ∩ Vλ and Ωc

λ ∩ Vλc

where

Vλ =

(x, y) ∈ M ×M : max

α,β∈0,1λ−α−β |∇αx ∇

βy Cov(Ψλ(x),Ψλ(y))| > λ

− n−14

.

4 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ using that

vol(Vλ) = O(λ−n−1

2 ).

5 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ

c by hand.

Page 62: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Ideas in the proof

• For the expected values: integrate the local estimates after splitting the manifoldinto small patches.

• For the variance: we need to integrate Kac-Rice’s integrand on M ×M:1 Split M ×M into two sets:

Ωλ :=⋃α

Bα,λ × Bα,λ and Ωcλ

2 Control Kac-Rice’s integrand on Ωλ using the local results.

3 Split Ωcλ into two sets:

Ωcλ ∩ Vλ and Ωc

λ ∩ Vλc

where

Vλ =

(x, y) ∈ M ×M : max

α,β∈0,1λ−α−β |∇αx ∇

βy Cov(Ψλ(x),Ψλ(y))| > λ

− n−14

.

4 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ using that

vol(Vλ) = O(λ−n−1

2 ).

5 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ

c by hand.

Page 63: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Ideas in the proof

• For the expected values: integrate the local estimates after splitting the manifoldinto small patches.

• For the variance: we need to integrate Kac-Rice’s integrand on M ×M:1 Split M ×M into two sets:

Ωλ :=⋃α

Bα,λ × Bα,λ and Ωcλ

2 Control Kac-Rice’s integrand on Ωλ using the local results.

3 Split Ωcλ into two sets:

Ωcλ ∩ Vλ and Ωc

λ ∩ Vλc

where

Vλ =

(x, y) ∈ M ×M : max

α,β∈0,1λ−α−β |∇αx ∇

βy Cov(Ψλ(x),Ψλ(y))| > λ

− n−14

.

4 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ using that

vol(Vλ) = O(λ−n−1

2 ).

5 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ

c by hand.

Page 64: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Ideas in the proof

• For the expected values: integrate the local estimates after splitting the manifoldinto small patches.

• For the variance: we need to integrate Kac-Rice’s integrand on M ×M:1 Split M ×M into two sets:

Ωλ :=⋃α

Bα,λ × Bα,λ and Ωcλ

2 Control Kac-Rice’s integrand on Ωλ using the local results.

3 Split Ωcλ into two sets:

Ωcλ ∩ Vλ and Ωc

λ ∩ Vλc

where

Vλ =

(x, y) ∈ M ×M : max

α,β∈0,1λ−α−β |∇αx ∇

βy Cov(Ψλ(x),Ψλ(y))| > λ

− n−14

.

4 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ using that

vol(Vλ) = O(λ−n−1

2 ).

5 Control Kac-Rice’s integrand on Ωcλ ∩ Vλ

c by hand.

Page 65: -8cm Zeros and critical points of monochromatic random …people.maths.ox.ac.uk/belyaev/RandomWaveOxford/slides/... · 2018. 7. 5. · Zeros and critical points of monochromatic random

Thank you!