62/87,21 D - Purdue University · 2020. 11. 4. · Microsoft Word - HW8_solution.docx Author: kylem...

11
SOLUTION a) FBD analysis over the whole beam, 2 pt. for all FBDs

Transcript of 62/87,21 D - Purdue University · 2020. 11. 4. · Microsoft Word - HW8_solution.docx Author: kylem...

  • SOLUTION

    a)

    FBD analysis over the whole beam,

    2 pt. for all FBDs

  • Σ𝑀 = 𝐹𝐿

    2− 𝑃𝐿 = 0 ⇒ 𝐹 = 2𝑃

    0 < 𝑥 < 0.5𝐿:

    Σ𝐹 = 𝑉 − 𝑃 + 𝐹 = 0 ⇒ 𝑉 = −𝑃

    Σ𝑀 = −𝑀 − 𝑃(𝐿 − 𝑥) + 𝐹𝐿

    2− 𝑥 = 0 ⇒ 𝑀 = −𝑃𝑥

    0.5𝐿 < 𝑥 < 𝐿:

    Σ𝐹 = 𝑉 − 𝑃 = 0 ⇒ 𝑉 = 𝑃

    Σ𝑀 = −𝑀 − 𝑃(𝐿 − 𝑥) = 0 ⇒ 𝑀 = 𝑃(𝑥 − 𝐿)

    Flexural energy due to bending,

    𝑈 =𝑀1𝑥 𝑑𝑥

    2𝐸𝐼

    .

    +𝑀2𝑥 𝑑𝑥

    2𝐸𝐼.=

    1

    2

    𝑃 𝑥 𝑑𝑥

    𝐸𝐼

    .

    +1

    2

    𝑃 (𝑥 − 𝐿) 𝑑𝑥

    𝐸𝐼.=

    𝑃 𝐿

    24𝐸𝐼

    Using Castigliano’s Theorem,

    𝑣 =𝜕𝑈

    𝜕𝑃=

    𝑃𝐿

    12𝐸𝐼= 4.8828 × 10 𝑚

    b)

    Shear energy due to bending,

    𝑈 =𝑓

    𝑠𝑉

    1𝑥𝑑𝑥

    2𝐺𝐴

    .

    +𝑓

    𝑠𝑉

    2𝑥𝑑𝑥

    2𝐺𝐴.=

    𝑓𝑠𝑃 𝑑𝑥

    2𝐺𝐴=

    𝑓𝑠𝑃 𝐿

    2𝐺𝐴

    Combining energy terms,

    𝑈 = 𝑈 + 𝑈 =𝑃 𝐿

    24𝐸𝐼+

    𝑓𝑠𝑃 𝐿

    2𝐺𝐴

    Using Castigliano’s Theorem,

    𝑣 =𝜕𝑈

    𝜕𝑃=

    𝑃𝐿

    12𝐸𝐼+

    𝑓𝑠𝑃𝐿

    𝐺𝐴= 4.9203 × 10 𝑚

    1 pt.

    1 pt.

    1 pt.

    1 pt.

    1 pt.

    1 pt.

    1 pt.

  • c)

    𝑅 =𝑣 ,( )

    𝑣 ,( )=

    4.8828

    4.9203= 0.9924

    1 pt.

  • Solution:

    Equilibrium: Beam is statically indeterminate.

    ∑𝑀 = 𝑀 −1

    2𝑤 𝐿

    𝐿

    4+

    5

    4𝐵 𝐿 −

    3

    2𝑃𝐿

    𝑀 −1

    8𝑤 𝐿 +

    5

    4𝐵 𝐿 −

    3

    2𝑃𝐿 = 0

    ∑𝐹 = 𝐴 + 𝐵 − 𝑃 −1

    2𝑤 𝐿 = 0

    2 pt.

    For all FBDs

    1 pt.

    𝑥

  • Making a cut at section 0 < 𝑥 < we get:

    ∑𝑀 = 0

    −𝑀 − 𝑃𝑥 = 0

    𝑀 (𝑥) = −𝑃𝑥,𝛿𝑀

    𝛿= 0

    Making a cut at section < 𝑥 < 𝐿 we get:

    ∑𝑀 = 0

    −𝑀 + 𝐵 𝑥 −𝐿

    4− 𝑃𝑥 = 0

    𝑀 (𝑥) = 𝐵 𝑥 −𝐿

    4− 𝑃𝑥,

    𝛿𝑀

    𝛿= 𝑥 −

    𝐿

    4

    1 pt.

    1 pt.

    1 pt. for 3 correct cuts

    𝑥

    𝑥

  • Making a cut at section 𝐿 < 𝑥 < 𝐿 we get:

    ∑𝑀 = 0

    −𝑀 −1

    2𝑤 (𝑥 − 𝐿) + 𝐵 𝑥 −

    𝐿

    4− 𝑃𝑥 = 0

    𝑀 (𝑥) = −1

    2𝑤 (𝑥 − 𝐿) + 𝐵 𝑥 −

    𝐿

    4− 𝑃𝑥,

    𝛿𝑀

    𝛿𝐵= 𝑥 −

    𝐿

    4

    Total strain energy = 𝑈 = ∫ 𝑑𝑥 + ∫ 𝑑𝑥 + ∫ 𝑑𝑥

    𝛿𝑈

    𝛿𝐵= 0 +

    𝑀

    𝐸𝐼

    𝛿𝑀

    𝛿𝐵𝑑𝑥 +

    𝑀

    𝐸𝐼

    𝛿𝑀

    𝛿𝐵𝑑𝑥 = 0

    1

    𝐸𝐼𝐵 𝑥 −

    𝐿

    4− 𝑃𝑥 𝑥 −

    𝐿

    4𝑑𝑥 +

    1

    𝐸𝐼−

    1

    2𝑤 (𝑥 − 𝐿) + 𝐵 𝑥 −

    𝐿

    4− 𝑃𝑥 𝑥 −

    𝐿

    4𝑑𝑥 = 0

    9𝐿

    1282𝐵 − 3𝑃 +

    𝐿

    384196𝐵 − 9𝐿𝑤 − 244𝑃 = 0

    128

    192𝐵 =

    3

    128𝑤 𝐿 +

    325

    384𝑃

    𝐵 =9

    256𝑤 𝐿 +

    325

    256𝑃

    Optional solutions for 𝑨𝒚 and 𝑴𝒂

    1 pt.

    1 pt.

    1 pt.

    1 pt.

    𝑥

  • 𝐴 = 𝑃 + 𝑤 𝐿 − 𝐵 = 𝑃 + 𝑤 𝐿 −9

    256𝑤 𝐿 −

    325

    256𝑃

    𝐴 =247

    256𝑤 𝐿 −

    69

    256𝑃

    𝑀 =1

    8𝑤 𝐿 −

    5

    4𝐵 𝐿 +

    3

    2𝑃𝐿 =

    1

    8𝑤 𝐿 −

    45

    1024𝑤 𝐿 −

    1625

    1024𝑃𝐿 +

    3

    2𝑃𝐿

    𝑀 =83

    1024𝑤 𝐿 −

    89

    1024𝑃𝐿

  • SOLUTION

    FBD analysis on Section AB,

    Σ𝐹 = 𝑉 + 𝑃 = 0 ⇒ 𝑉 = −𝑃

    Σ𝑀 = 𝑀 (𝑦) + 𝑃(𝐿 − 𝑦) = 0 ⇒ 𝑀 (𝑦) = 𝑃(𝑦 − 𝐿)

    Σ𝑀 = 𝑀 − 𝑃𝐿 + 𝑀 = 0 ⇒ 𝑀 = 𝑃𝐿 − 𝑀

    FBD analysis on Section BC,

    Σ𝐹 = −𝑉(𝑥) + 𝑃 = 0 ⇒ 𝑉(𝑥) = 𝑃

    Σ𝑀 = 𝑀 − 𝑀(𝑥) − 𝑃(𝐿 − 𝑥) = 0 ⇒ 𝑀(𝑥) = 𝑀 + 𝑃(𝑥 − 𝐿)

    Energy on Section AB,

    𝑈 =𝑀𝑜𝑥 𝑑𝑦

    2𝐸𝐼+

    𝑀𝑜𝑦 𝑑𝑦

    2𝐺𝐼=

    1

    2

    𝑃 (𝑦 − 𝐿)

    𝐸𝐼𝑑𝑦 +

    1

    2

    (𝑃𝐿 − 𝑀𝑑) 𝐿

    𝐺𝐼𝑑𝑦

    Energy on Section BC,

    𝑈 =𝑀(𝑥) 𝑑𝑥

    2𝐸𝐼=

    1

    2

    (𝑀𝑑 + 𝑃(𝑥 − 𝐿))

    𝐸𝐼𝑑𝑥

    𝑈 = 𝑈 + 𝑈 =1

    2

    𝑃 (𝑦 − 𝐿)

    𝐸𝐼𝑑𝑦 +

    1

    2

    (𝑃𝐿 − 𝑀𝑑)

    𝐺𝐼𝑑𝑦 +

    1

    2

    (𝑀𝑑 + 𝑃(𝑥 − 𝐿))

    𝐸𝐼𝑑𝑥

    Using Castigliano’s Theorem,

    𝐿 𝐿

    2 pt. for all FBDs

    1 pt.

    1 pt.

    1 pt.

    1 pt.

  • a)

    𝑣 =𝜕𝑈

    𝜕𝑃|

    =1

    𝐸𝐼𝑃(𝑦 − 𝐿) 𝑑𝑦 +

    1

    𝐺𝐼(𝑃𝐿 − 𝑀 )𝐿 𝑑𝑦 +

    1

    𝐸𝐼(𝑀𝑑 + 𝑃(𝑥 − 𝐿))(𝑥 − 𝐿) 𝑑𝑥

    =1

    𝐸𝐼𝑃(𝑦 − 𝐿) 𝑑𝑦 +

    1

    𝐺𝐼𝑃𝐿2 𝑑𝑦 +

    1

    𝐸𝐼𝑃(𝑥 − 𝐿)2 𝑑𝑥

    =𝑃𝐿

    3𝐸𝐼+

    𝑃𝐿

    𝐺𝐼𝑝+

    𝑃𝐿

    3𝐸𝐼

    =2𝑃𝐿3

    3𝐸𝐼+

    𝑃𝐿

    𝐺𝐼𝑝

    𝑆𝑖𝑛𝑐𝑒 𝐼 =𝜋𝑑

    64, 𝐼 =

    𝜋𝑑

    32

    ⇒ 𝑣 =32𝑃𝐿3

    𝜋𝑑4(

    4

    3𝐸+

    1

    𝐺)

    b)

    𝜃 =𝜕𝑈

    𝜕𝑀| = 0 +

    −1

    𝐺𝐼(𝑃𝐿 − 𝑀 )𝑑𝑦 +

    1

    𝐸𝐼(𝑀 + 𝑃(𝑥 − 𝐿))𝑑𝑥

    =−1

    𝐺𝐼𝑃𝐿𝑑𝑦 +

    1

    𝐸𝐼𝑃(𝑥 − 𝐿) 𝑑𝑥

    = −𝑃𝐿

    𝐺𝐼𝑝−

    𝑃𝐿

    2𝐸𝐼

    =−32𝑃𝐿2

    𝜋𝑑4(

    1

    𝐺+

    1

    𝐸)

    1 pt.

    1 pt.

    1 pt.

    1 pt.

  • Justification:

    {0 < 𝑥 < 𝐿}, {𝐿 < 𝑥 < 1.5𝐿}, {1.5𝐿 < 𝑥 < 2𝐿}, 𝑎𝑛𝑑 {2𝐿 < 𝑥 < 3𝐿} each have unique equations for bending moment. Integration is performed section by section so that the sum of integrals spans the region of interest.

    5 pt.

    Partial credit case-by-case