446.328 Mechanical System Analysis

19
1 Dongjun Lee 446.328 Mechanical System Analysis 기계시스템해석 Dongjun Lee (이동준) Department of Mechanical & Aerospace Engineering Seoul National University Dongjun Lee Today RLC circuit mathematical analogy impedance opamp opamp circuits dc motors step motors

Transcript of 446.328 Mechanical System Analysis

1

Dongjun Lee

446.328 Mechanical System Analysis

기계시스템해석

Dongjun Lee (이동준)

Department of Mechanical & Aerospace EngineeringSeoul National University

Dongjun Lee

Today

‐ RLC circuit

‐mathematical analogy

‐ impedance

‐ op‐amp

‐ op‐amp circuits

‐ dc motors

‐ step motors

2

Dongjun Lee

RLC Components

variable resistance: potentiometer

voltage source: can provide any amount 

of current (cf. constant pressure pump)

resistor: dissipate energy similar to  damping [Ω

Ohm’s law

position sensing!

Dongjun Lee

RLC Components

charge stored in capacitor

capacitor [F]: two conductors separated by 

non‐conducting medium

V can’t change instantaneously

1

inductor [H]: coupling between current‐flow and induced magnetic field

magnetic flux due to coiling

1

,1

3

Dongjun Lee

Kirchhoff’s Laws

1. voltage law: 

sum of voltage drops around 

a closed‐loop is zero

Δ Δ Δ Δ 0

2. current law: 

sum of currents at a junction is zero

0ex) equivalent capacitance

1 1 parallel    

series    

equivalent resistance

series   

parallel    

equivalent inductance

series   

parallel    

impedance

Dongjun Lee

Impedance

impedance

ex) impedance as a transfer function

force

velocity

admittance

1

force

velocity

passive 

circuit

system

+

passive 

circuit

system

incident wave

reflected wave

scatteringoperator

ex) series and parallel connections

series    parallel    

4

Dongjun Lee

Mathematical Analogy

analogous! spring

1

dampingmassposition

1

velocity

mathematically equivalent can use same tool/analysis across different domains!

(e.g., transfer function, state‐space approach, …)

1

Dongjun Lee

2ndOrder Response of RLC Circuit

1→

1

11

‐ natural frequency  

‐ damping ratio 

‐ response of  with unit‐step  1?‐ for circuits, usually over‐damped (e.g., L = 1mH, R = 200 ‐> C < 100nF)

‐ state‐space   0 11/ / , ⋯ → ,

small

5

Dongjun Lee

Input and Output Impedance

input impedance output impedance* we want:

1. very large input impedance  

no effect on the source circuit w/o change in 

2. very low output impedance 

no voltage drop in  and no effect by the loading circuit

* if  ≫ , we can consider 

two systems decoupled from each other 

can analyze them separately!

system I system II

Dongjun Lee

Input/Output Impedance ‐ Example

11

11

1

1

series   

parallel    

11 1

if    ≫

* input impedance: circuit impedance seen from input source to ground

* output impedance: circuit impedance seen from output source with input short‐circuited

measurement system

6

Dongjun Lee

Operational Amplifier

‐ ideal op‐amp

1) infinite input impedance       ∞ → 02) infinite open‐loop gain          ∞ → 3) zero output impedance          0 →output = 

‐ difference amplifier  large open‐loop gain: 10 ~10

‐ : ~ Ω,    0Ω

Dongjun Lee

OP‐Amp Circuits ‐ I

virtual ground

7

Dongjun Lee

voltage follower

OP‐Amp Circuits ‐ II

high input impedance w/ low output impedance!

Dongjun Lee

V1

V2

R4

adjustable gain

if  ,   1 2

instrumentation amplifier

OP‐Amp Circuits ‐ III

8

Dongjun Lee

OP‐Amp Circuits ‐ IV

differentiator

integrator1

11

time constant   

Dongjun Lee

first‐order LPF

OP‐Amp Circuits ‐V

second‐order LPF

11

11

1 1

1

v1

1

i2

i1

i

9

Dongjun Lee

‐ input impedance     2 Ω‐ input offset voltage  for  0 2‐ input offset current for  0 20‐ output short circuit current = max. current from  25‐ common mode rejection ratio:   

10 10 ← /2

‐ slew‐rate .

‐ bandwidth:  (w/ fb, 

to avoid instability in high‐frequency w/ ‐180deg phase‐lag

‐maximum output     _

Real OP‐Amp (LM741C)

Dongjun Lee

Magneto‐Mechanical Coupling

i [x]

conductor

1) magnetic‐field induces force 2) motion induces voltage drop

f = BLi [z]

f: magnetic‐field induced forcei: currentB: magnetic field flux densityL: conductor length

conductor

v: motion [x]

E: back emf (electromotive force)v: velocityB: magnetic field flux density L: conductor length

10

Dongjun Lee

Armature‐Controlled Motor

torque

modeling

# of colis armatureradius

back emf

linearvelocity

angularvelocity

armaturelength

unwind armature coil

Dongjun Lee

dc‐Motor Modeling

mechanical side electrical side

externaltorque

‐ shaft torque proportional to current

‐ no‐load max. shaft velocity proportional to voltage (w/   0‐ 1(if  in  ] and  in  / ])

kT: torque constant ke = 1/kn: speed 

constant

11

Dongjun Lee

dc‐Motor System TF

mechanical side electrical side

often small

: torque constant 1/ : speed 

constant

1

transfer matrix

Dongjun Lee

Example: Tachometer

back emf

governingequation

(tachometer)   

i

Vo

1‐st order with  /if  1[rad/s]  ‐>  →63% steady‐state value at 

0

12

Dongjun Lee

Example: Speaker

systemmodeling

m

k

c

x,f

speaker coil +diaphragm

electrical amplifier

diaphragm & coilmove together

in B

Dongjun Lee

Real dc‐Motor

2: rotor – permanent magnet 5: stator – winding8: graphite brush or metal brush 7: commutator

13

Dongjun Lee

Commutator and Brush

‐ commutator: sequentially alternate current w.r.t. motor rotation

‐ brush (graphite/metal): maintain contact with rotating rotor ‐> friction 

‐ brushless motor: proximity sensor + circuitry w/ NO mechanical contact

‐> less friction/ higher performance

* armature motor

brush

commutator

Dongjun Lee

dc‐motor data sheet

motor diagram

14

Dongjun Lee

Gearbox

[shaft w] = [motor w] / N

[shaft T] = N x [motor T] x η

‐ dc motor: designed for high speed and low torque

‐ real task: low speed and high force

‐ gear ratio = N : 1

motor wm output shaft wo

speed reduction

torqueamplification

efficiency

Dongjun Lee

Gearbox

15

Dongjun Lee

Encoder

- incremental quadrature encoder

three tracks: A, B, Index (+ A-, B-, Index- for differential)index pulse: zero position, number of turns

resolution = counts per turn * 4

current input position output?

Dongjun Lee

Encoder

16

Dongjun Lee

Resolver

‐ analog sensor (i.e., infinite‐resolution), absolute over a single turn

‐ started from military applications, in harsht industrial environments

‐ hot, humid, dusty, oily, or mechanically demanding environment

‐ AC voltage (6 VAC to 60 VAC, 400 Hz to 10,000 Hz) applied to the rotating coil 

(rotor) induces a voltage across the gap in the stationary coil (stator)

Dongjun Lee

Encoder vs Resolver

Four unique states of the A and B signals known as quadrature output: A high –B low, A high – B high, A low – B high, and A low – B low.Since these four detectable states occur for every line on the codewheel, the resolution of the graduated lines can be multiplied by four.The smallest resolvable angle is then ¼ the angle between the coded lines ( = 360 / 4 * n). A 10 bit encoder (1024 lines) can be used to resolve 12 bits (4096 counts).

17

Dongjun Lee

PWM

input?

PWM (pulse width modulation)

- torque command signal is converted into pulses- higher duty cycle (i.e. 100*t/T[%]) -> higher current - much less power consumption than linear amplifier

T: period

t: width

linear amplifier:larger V*I dissipation

V

Dongjun Lee

Motor Driver (Amplifier)

18

Dongjun Lee

Stepper Motors

variable reluctance

iron tooth core

permanent magnet hybrid

obsoletebetter 

larger torque

24‐48 cpt

cheaper

best

largest torque

100‐400 cpt

expensive

permanentmagnet

polarity‐changingstator 

tooth‐attracting

stator

tootheadpermanentmagnet:

focused magneticflux

Dongjun Lee

Stepper Motor Principle

‐ digital pulse to change stator polarity ‐> angle increment

‐ pulse rate ‐> angular rate

‐ simple to control + low power 

‐ no feedback: may be slipped or exceeding from desired angle!

19

Dongjun Lee

Next Lecture

‐ frequency response