4. Torsion - FSv ČVUT v Praze -- FSv ČVUT --...

8
©4 Prof. Ing. Josef Macháček, DrSc. OK3 1 4. Torsion Open and closed cross sections, simple St. Venant and warping torsion, interaction of bending and torsion, Eurocode approach. Common is elastic solution (nonlinear plastic analysis – e.g. Strelbickaja) Eurocode 3 enables combination of plastic bending moment and elastic torsion. Should be distinguished: - simple torsion: only shear stresses arise, - warping torsion: both shear and direct (normal) stresses arise. 1. Open cross sections (e.g. I, U, L) a) Simple (Saint Venant’s) torsion (occurs only exceptionally, see later) τ t τ i T t t b i = 1 i = 2 i = 3 Only shear arises: 3 / 0 M y (i) t t t(i) γ τ f t I T = (maximal in t max ) = i 3 i i t 3 1 t b I α (influence of rounding of rolled sections, otherwise = 1)

Transcript of 4. Torsion - FSv ČVUT v Praze -- FSv ČVUT --...

Page 1: 4. Torsion - FSv ČVUT v Praze -- FSv ČVUT -- Peoplepeople.fsv.cvut.cz/~machacek/prednaskyOK3E/OK3-4E.pdfstress through thickness t sectorial section modulus Applies „bending analogy“

© 4 Prof. Ing. Josef Macháček, DrSc.

OK3 1

4. TorsionOpen and closed cross sections, simple St. Venant and warping torsion,interaction of bending and torsion, Eurocode approach.

Common is elastic solution (nonlinear plastic analysis – e.g. Strelbickaja)Eurocode 3 enables combination of plastic bending moment and elastic torsion.

Should be distinguished:- simple torsion: only shear stresses arise,- warping torsion: both shear and direct (normal) stresses arise.

1. Open cross sections (e.g. I, U, L)a) Simple (Saint Venant’s) torsion (occurs only exceptionally, see later)

τt

τiTt

t

bi = 1

i = 2

i = 3

Only shear arises:

3/ 0My

(i)t

tt(i)

γτ

ft

IT

≤=

(maximal in tmax)

∑=i

3iit 3

1 tbI α

(influence of rounding of rolled sections,otherwise = 1)

Page 2: 4. Torsion - FSv ČVUT v Praze -- FSv ČVUT -- Peoplepeople.fsv.cvut.cz/~machacek/prednaskyOK3E/OK3-4E.pdfstress through thickness t sectorial section modulus Applies „bending analogy“

© 4 Prof. Ing. Josef Macháček, DrSc.

OK3 2

b) Warping torsion (according to Vlasov’s theory)

• one part of a torsion moment T is transmitted by simple torsion Tt , • other part by bending torsion Tw : T = Tt + Tw

Assumptions: 1. Rigid cross section,2. Null shear deformation

(shear lag ignored).

moment of simple torsion

moment of bending torsion

bimoment

bending torsion

T

S shear centre(bending centre)

σwτt τw

= +++

+

-

-

in warping torsion everythingis related to central line

internal forces: Tt Tw B

Page 3: 4. Torsion - FSv ČVUT v Praze -- FSv ČVUT -- Peoplepeople.fsv.cvut.cz/~machacek/prednaskyOK3E/OK3-4E.pdfstress through thickness t sectorial section modulus Applies „bending analogy“

© 4 Prof. Ing. Josef Macháček, DrSc.

OK3 3

Shear stresses:• simple torsion τt

• bending torsion

e.g.:

Direct (normal) stress:

Resulting stresses:

www W

BIwB

==σ

w

www It

ST=τ

first sectorial moment

warping constant

t

τw,max τt

t

stress through thickness t

sectorial section modulus

Applies „bending analogy“ : B → M or σw → σ

Tw→ V or τw → τ

Page 4: 4. Torsion - FSv ČVUT v Praze -- FSv ČVUT -- Peoplepeople.fsv.cvut.cz/~machacek/prednaskyOK3E/OK3-4E.pdfstress through thickness t sectorial section modulus Applies „bending analogy“

© 4 Prof. Ing. Josef Macháček, DrSc.

OK3 4

Sectorial characteristics

• Rolled sections – see tables.

• In general from sectorial coordinate:

I cross section:

4ds

s

hbrw =∫=

z

2

A

2w 4

dA IhwI == ∫U cross section:

a = a

w Swin this positionno torsion !!

GS

The main sectorial coordinate:

First sectorial moment:

16dA

2

Aw

tbhwS =∫=

Second sectorial moment (warping constant):

w, Sw, Iw ... see tables

0dAdAAA

=∫=∫ wzwyPosition of S:

(product sectorial moments)

t

h

b

wSw

rG ≡ S

z

Page 5: 4. Torsion - FSv ČVUT v Praze -- FSv ČVUT -- Peoplepeople.fsv.cvut.cz/~machacek/prednaskyOK3E/OK3-4E.pdfstress through thickness t sectorial section modulus Applies „bending analogy“

© 4 Prof. Ing. Josef Macháček, DrSc.

OK3 5

Determination of internal forces due to torsion:• solution of Vlasov’s differential equations, or directly from formulas,• based on „bending analogy“.

Distribution of torsion moment:

eF

V

simple support in torsion (couple of forces)

M

Abending

torsion

T = Ve

B

Distribution of torsional moment due to eccentrical force corresponds to distribution of transverse force ateccentricity.Part transmitted by simple torsion is set aside:

κeVT ≅t

( )κ−≅ 1w eVT

( )κ−≅ 1eMBMe

Superposition for more complex loading is necessary:

κ ... see table of Eurocode Czech NA

e2

e1

- e3

Page 6: 4. Torsion - FSv ČVUT v Praze -- FSv ČVUT -- Peoplepeople.fsv.cvut.cz/~machacek/prednaskyOK3E/OK3-4E.pdfstress through thickness t sectorial section modulus Applies „bending analogy“

© 4 Prof. Ing. Josef Macháček, DrSc.

OK3 6

Simplified (conservative) solution – neglects simple torsion:

bending of flanges only = bimoment(often adequate: it is conservative from σw point of view)

Important notes:

1. Large direct stresses, they can not be ignored!!

2. Direct stresses (warping torsion) do not arise:a) for loading by stresses τt, roughly also due to end

T loading (simple torsion arises only):

b) in sections composed of radiating outstands(because of w = Iw = 0):

3. In practice usually occurs „torsion about enforced axis“ (V):

T0

T T/h

T/h

h

(shear centre S is in cross point)

moreover, torsion is usually restricted by cladding rigidity ⇒ torsion may often be ignored.

analysis about original shear centre Sis uneconomical !!! S

S ≡ V e

Page 7: 4. Torsion - FSv ČVUT v Praze -- FSv ČVUT -- Peoplepeople.fsv.cvut.cz/~machacek/prednaskyOK3E/OK3-4E.pdfstress through thickness t sectorial section modulus Applies „bending analogy“

© 4 Prof. Ing. Josef Macháček, DrSc.

OK3 7

a) Simple torsion (shear stresses only, usual design)

2. Closed cross sections (e.g. )

Bredt’s shear flow (τt t ) = const.

(i)t(i) t

Tt

Ωτ =

b) Warping torsion: - Umanskij’s theory (rigid cross section),- Vlasov’s theory with non rigid cross section,- FEM (including influence of bevelled cross section,

gives also transversal bending moments in plates).

The stresses are the same as in open cross sections: τt, τw, σw. However, τw, σw are very small, commonly ignored even for bridges.

= 2 As

As

τt tidi

Tt

Contrary to open cross section the maximal shear τt

is in the thinnest plate and along thickness constant !!

Page 8: 4. Torsion - FSv ČVUT v Praze -- FSv ČVUT -- Peoplepeople.fsv.cvut.cz/~machacek/prednaskyOK3E/OK3-4E.pdfstress through thickness t sectorial section modulus Applies „bending analogy“

© 4 Prof. Ing. Josef Macháček, DrSc.

OK3 8

3. Interaction of bending and torsion ( My + T )e

Direct stresses (open cross sections only):

M1ywMy γσσσ /f≤+=

M1yw

Ed

yLT

Edy, γχ

/fWB

WM

≤+

Shear stresses:

i.e.

( ) ( ) Rdpl,My

Edw,

M0y

Edt,RdT,pl, V

//f//f,V

⎥⎥⎦

⎢⎢⎣

⎡−−=

0332511

γτ

γτ

1≤RdT,pl,

Ed

VV Vpl,T,Rd is design plastic shear resistance of the cross section.

For open sections I and U

For closed sections ( ) Rdpl,My

Edt,RdT,pl, V

//fV

⎥⎥⎦

⎢⎢⎣

⎡−=

031

γτ

in U sections only

In general, bending and torsion stresses may be summed and von Mises criterionapplied:

132

000

22

0≤⎟

⎟⎠

⎞⎜⎜⎝

⎛+⎟

⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−⎟

⎟⎠

⎞⎜⎜⎝

⎛+⎟

⎟⎠

⎞⎜⎜⎝

My

Ed

My

Edz,

My

Edx,

M0y

Edz,

My

Edx,

γτ

γσ

γσ

γσ

γσ

/f/f/f/f/f