2016 TrainingCourses-DMA - shorter › ~skrishna › DMA_Basic_Theory... · 2017-04-28 · D ^ ] (...

of 262 /262
LJŶĂŵŝĐDĞĐŚĂŶŝĐĂůŶĂůLJƐŝƐ ĂƐŝĐdŚĞŽƌLJΘƉƉůŝĐĂƚŝŽŶƐdƌĂŝŶŝŶŐ

Embed Size (px)

Transcript of 2016 TrainingCourses-DMA - shorter › ~skrishna › DMA_Basic_Theory... · 2017-04-28 · D ^ ] (...

  • σσσσ = tensile stress, ττττ = shear stress

    εεεε = tensile strain, γγγγ = shear strain

    ηηηη ×

  • μ μ μ μ

  • ν

    0zz

    σz

    σz

    y

    Poisson’s Ratio0y

  • Film/Fiber

    Compression

    3-Pt Bending

    Cantilever

    Shear Sandwich

    Contact Lens

  • °

  • Modulus = Stiffness Geometry Factor

  • 16 mm long10 mm wide4 mm thick

    35 mm long12.5 mm wide3.2 mm thick

    35 mm long12.5 mm wide1.75 mm thick

    8 mm long12.5 mm wide0.1 mm thick

    10 510210 110 0

    Geometry Factor (1/mm)10 3 10 410 -1

    10 4

    10 5

    10 6

    10 7

    10 8

    10 9

    10 10

    10 13

    10 12

    10 11

    10 3

    Mo

    du

    lus

    (Pa)

    Modulus = Stiffness Geometry Factor

  • Modulus = Stiffness Geometry Factor

  • 17.5 mm long12.5 mm wide3.2 mm thick

    17.5 mm long12.5 mm wide1.75 mm thick

    17.5 mm long12.5 mm wide0.5 mm thick

    10 510210 110 0

    Geometry Factor (1/mm)10 3 10 410 -1

    10 4

    10 5

    10 6

    10 7

    10 8

    10 9

    10 10

    10 13

    10 12

    10 11

    10 3

  • Modulus = Stiffness Geometry Factor

  • 20 mm long12.5 mm wide2.5 mm thick

    50 mm long12.5 mm wide3.2 mm thick

    50 mm long12.5 mm wide

    1 mm thick

    10 510 210 110 0

    Geometry Factor (1/mm)10 3 10 4

    10 4

    10 5

    10 6

    10 7

    10 8

    10 9

    10 10

    10 13

    10 12

    10 11

    Mo

    du

    lus

    (Pa)

  • Geometry Factor (1/mm)

    10 mm long5 mm long

    0.2 mm long

    20 mm long4 mm wide

    0.1 mm thick20 mm long0.1 mm diameter

    10 -1 10 0 10 1 10 2 104

    10 3 10 510 4

    10 5

    10 6

    10 7

    10 8

    10 9

    10 10

    10 11

    10 12

    10 13

    Mo

    du

    lus

    (Pa)

    Modulus = Stiffness Geometry Factor

  • Stationary Clamp

    Sample

    Movable Clamp

  • 10 -1 10 010 -210 -310 -4

    10 4

    10 5

    10 6

    10 7

    10 8

    10 9

    10 10

    10 3

    10 2

    10 1

    Geometry Factor (1/mm)

    Mo

    du

    lus

    (Pa)

    1 mm thick40 mm diameter

    2 mm thick20 mm diameter

    6 mm thick10 mm diameter

    Modulus = Stiffness Geometry Factor

  • MovableClamp Stationary

    Clamp

    Sample

  • each piece2 mm thick

    10 mm square

    each piece4 mm thick

    5 mm square

    10 -1 10 010 -210-3

    10 4

    10 5

    10 6

    10 7

    10 8

    10 9

    10 10

    10 3

    10 2

    10 1

    Geometry Factor (1/mm)

    Mo

    du

    lus

    (Pa)

    Modulus = Stiffness Geometry Factor

  • ≥ ≥

  • Parallel RazorBlade Cutter

    Good for Films andSheets of rubber.

    Cork Borer

    Good for stiff foams andSheets of rubber.

  • ideal inclined

    Force

    If sample buckles duringOscillation. Modulus will be artificially low.

    sagging variable thickness

    Buckling during loading causes serious errors as buckled areas do not “feel” the force or deformationBuckling can be the result of non-uniform stretching, or crooked loading of a film. Observe film from edge while oscillating to verify goodness of load.If sample is buckling, reload a new sample.

  • Lightly finger-tightened + ¼ turn + ½ turn + 1 turn

  • Note: Details for calibrations are provided in the Appendix

  • Note: Details for calibrations are provided in the Appendix

  • ≈ ≈ ≈

    δ

    δ ° °°

  • ±

  • ° °°

    Thermocouple

  • = E*

  • = * d /dt

    Str

    ess

    Strain Rate

  • = E* + (?)*d /dt

  • L1L2

  • Started in 1927 by Thomas Parnell in Queensland, Australia

  • ���τ ��Τ

  • (τΤ .

    De = τ/Τ

  • Mark, J., et. al., Physical Properties of Polymers, American Chemical Society, 1984, p. 102.

  • γ

  • δ η

  • Deformation

    Response

    Phase angle δ

    An oscillatory (sinusoidal) deformation (stress or strain)is applied to a sample.

    The material response (strain or stress) is measured.

    The phase angle δ, or phase shift, between the deformation and response is measured.

  • Strain

    Stress

    δ ° δ °

    Purely Elastic Response(Hookean Solid)

    Purely Viscous Response(Newtonian Liquid)

    Strain

    Stress

  • Phase angle 0°< δ < 90°

    Stress

    Strain

  • The stress in a dynamic experiment is referred to as the complex stress σ*

    Phase angle δδδδ

    Complex Stress, σσσσ*

    Strain, εεεε

    σσσσ* = σσσσ' + iσσσσ"

    The complex stress can be separated into two components: 1) An elastic stress in phase with the strain. σσσσ' = σσσσ*cosδ δ δ δ σ' is the degree to which material behaves like an elastic solid.2) A viscous stress in phase with the strain rate. σσσσ" = σσσσ*sinδδδδσ" is the degree to which material behaves like an ideal liquid.

    The material functions can be described in terms of complex variables having both real and imaginary parts. Thus, using the relationship:

    Complex number:

  • Phase angle δ

    E*

    E'

    E"Dynamic measurement represented as a vector

  • A

    A

  • Clamp Type Static Force Force Track Tension Film 0.01 N 120 to 150% Tension Fiber 0.001 N 120% Compression 0.001 to 0.01 N 125%

    Three Point Bending Thermoplastic Sample

    1 N 125 to 150%

    Three Point Bending Stiff Thermoset Sample

    1 N 150 to 200% Can use constant static

    force

  • γ

  • ���� ��

    ���

    ���

    ���

    ���

    ���

    ���

    ����

    ����

    ���

    ���������

    ������

    ������������

    ����������������

    ���������

    �������

    δ

  • Clamp Amplitude (μm)

    Tension Film or Fiber 15 to 25

    Compression 10 to 20

    3 Point Bend 25 to 40

    Dual/Single Cantilever 20 to 30

    Shear Sandwich 10 to 20

    Specialty Fiber 15 to 25

  • γ ε

    (γ( ) ε( )).

  • σ

    1 2

    σ/η

  • σ

    1 2

    σ

    σ/η

  • σ σ

    σ/η

  • η

    γγ

    Je = Equilibrium recoverable compliance

  • 0.0

    0.1

    0.2

    0.3

    0.4

    Str

    ain

    (%)

    4 6 8 10 12 14 16 18 20 22

    Time (min)

    Sample: PET Film Creep at 75°CSize: 10.5490 x 6.2500 x 0.0700 mmMethod: CreepComment: Stress

    DMAFile: C:\TA\Data\DMA\PetcreepOperator: Applications LaboratoryRun Date: 11-Sep-97 10:41

    Universal V2.6B TA Instrum ents

  • 0

    20000

    40000

    60000

    80000

    100000

    120000

    Cre

    ep C

    ompl

    ianc

    e (μ

    m^2

    /N)

    0 1 2 3 4 5 6 7 8 9 10

    Time (min)

    Poor Performance Good Performance Excellent Performance

    Universal V2.1A TA Instruments

  • σ

  • σσσσ γγγγ

  • Stress

  • ���� ��

    ����

    ����

    ���

    ���

    ���

    �����

    ���

    �����

    ������

    ��������

    ������

    ��

    ���������

    ���������

    ���������

    ���������

    �������

    �������

    �������

    �������

  • 0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Sta

    tic F

    orce

    (N

    )

    20 40 60 80 100 120 140

    Temperature (°C)

    Sample: Iso strainSize: 13.5810 x 5.3000 x 0.0500 mmMethod: Isostrain

    DMAFile: P:...\Q800 ISO STRAIN.002Operator: TerriRun Date: 2004-09-17 18:11Instrument: DMA Q800 V7.0 Build 113

    Universal V4.1C TA Instruments

  • 6.648657mm

    0.0099

    0.0100

    0.0101

    0.0102

    Sta

    tic F

    orce

    (N

    )

    2

    4

    6

    8

    10

    12Le

    ngth

    (m

    m)

    20 40 60 80 100 120 140 160

    Temperature (°C) Universal V4.7A TA Instruments

  • δ

    δδδδ

  • δ

  • 156.24°C(I)

    150.86°C

    160.83°C

    158.35°C

    159.85°C

    Polycarbonate shavings3C/Min heating rate - clamped to 4 PSI Pressure30 um Amplitude

    Expected Peak max in E" = 153C

    0.02

    0.04

    0.06

    0.08

    [

    ]

    Tan

    Del

    ta –

    ––––

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    [

    ] L

    oss

    Mod

    ulus

    (G

    Pa)

    – –

    – –

    4

    6

    8

    10

    12

    14

    Sto

    rage

    Mod

    ulus

    (G

    Pa)

    100 120 140 160 180

    Temperature (°C)

  • δ

  • (LCR Meter) Frequency

    Agilent 4285A

    Agilent E4980A

    ° °

  • 119.44°C

    -55.49°C0.05

    0.10

    0.15

    [ ]

    Tan

    Del

    ta

    10

    100

    1000

    10000

    [ ]

    Los

    s M

    odul

    us (

    MP

    a)

    10

    100

    1000

    10000

    [ ]

    Sto

    rage

    Mod

    ulus

    (M

    Pa)

    -150 -100 -50 0 50 100 150 200 250

    Temperature (°C)

    Sample: PET Film in Machine DirectionSize: 8.1880 x 5.5000 x 0.0200 mmMethod: 3°C/min rampComment: 1Hz; 3°C/min from -140° to 150°C, 15 microns,

    DMAFile: A:\Petmd.001Operator: RRURun Date: 27-Jan-99 13:56

    Universal V2.5D TA Instruments

  • 0% Crystallinity (100% Amorphous)

    25%

    40%

    65%

    M.P.

    Temperature

    Cowie, J.M.G., Polymers: Chemistry & Physics of Modern Materials, 2nd Edition, Blackie academic & Professional, and imprint of Chapman & HallBishopbriggs, Glasgow, 1991p. 330-332. ISBN 0 7514 0134 X

  • 20 40 60 80 100 120 140 160(°C)

    20 40 60 80 100 120 140 160(°C)

    E’

    E’

    δδ δδ

    δδ δδ

  • 0.025

    0.050

    0.075

    0.100

    0.125

    0.150

    Tan

    Del

    ta

    10

    100

    1000

    10000

    Loss

    Mod

    ulus

    (M

    Pa)

    100

    1000

    10000

    Sto

    rage

    Mod

    ulus

    (M

    Pa)

    -150 -100 -50 0 50 100 150 200 250

    Temperature (°C)

    –––––– PET Film 1st Heat – – – PET Film 2nd Heat

    Universal V2.5D TA Instruments

  • 138.58°C129.01°C

    1000

    10000

    1.0E5

    1.0E6

    1.0E7

    Sto

    rage

    Mod

    ulus

    (P

    a)

    120 130 140 150 160 170 180

    Temperature (°C)

    sample5.003 Exxon Sample #5 sample9.001 Exxon Sample #9

    Universal V2.6D TA Instruments

  • HDPELLDPE

    LDPE

    Property LDPE LLDPE HDPE

    Melting Point (C) 110 120-130 >130

    Density (g/cm3) 0.92 0.93 0.96

    Tensile strength (Mpa) 24 37 43

  • Nielsen, Lawrence E., Mechanical Properties of Polymers and , Marcel Dekker, Inc., New York, 1974, p. 51-52.

  • 19.51MPa

    40

    60

    80

    100

    120

    140

    [ –––

    –– ·

    ] Tem

    pera

    ture

    (°C

    )

    0.001

    0.01

    0.1

    1

    10

    100

    [ – –

    – –

    ] Lo

    ss M

    odul

    us (

    MP

    a)

    0.001

    0.01

    0.1

    1

    10

    100

    Sto

    rage

    Mod

    ulus

    (M

    Pa)

    0 10 20 30 40 50 60 70

    Time (min)

    Comment: 1 Hz, 20 microns

    Universal V2.6D TA Instruments

  • Notes:Frequency = 1 HzAmplitude = 40 micronsForce Track = 150%Ramp Rate = 3°C/min.

    10

    100

    1000

    10000

    1.0E5

    Loss

    Mod

    ulus

    (M

    Pa)

    10

    100

    1000

    10000

    1.0E5

    Sto

    rage

    Mod

    ulus

    (M

    Pa)

    20 40 60 80 100 120 140 160 180 200

    Temperature (°C)

    ––––––– Fibers Parallel to Length– – – – Fibers Perpindicular to length

    Universal V2.6D TA Instruments

  • 104.55°C

    96.82°C

    Notes:Frequency = 1 HzAmplitude = 40 micronsForce Track = 150%Ramp Rate = 3°C/min.

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    Tan

    Del

    ta

    25 50 75 100 125 150 175 200

    Temperature (°C)

    ––––––– Fibers Parallel to Length– – – – Fibers Perpindicular to Length

    Universal V2.6D TA Instruments

  • Static Force is Held Constant

    Sample Length Decreases

  • 0.05

    0.10

    0.15

    0.20

    Tan

    Del

    ta

    10

    100

    1000

    10000

    Loss

    Mod

    ulus

    (M

    Pa)

    100

    1000

    10000

    Sto

    rage

    Mod

    ulus

    (M

    Pa)

    -150 -100 -50 0 50 100 150 200

    Temperature (°C)

    –––––– PET Film in Transverse Direction – – – PET Film in Machine Direction

    Universal V2.5D TA Instruments

  • Temperature (°C)

    –––––– Polymer A– – – Polymer Blend: A + B–––– Polymer B

    Ela

    stic

    Mod

    ulus

  • 89.77°C

    76.19°C

    46.46°C

    -0.5

    0.0

    0.5

    1.0

    1.5

    Tan

    Del

    ta

    -25 0 25 50 75 100 125

    Temperature (°C)

    –––––– Polymer A – – – Polymer Blend: A + B–––– Polymer B

    Universal V2.5D TA Instruments

  • 20 40 60 80 100 120 140 160TEMP. (°C)

  • 10.44°C

    Initial 90 days

    12.82°C

    150 days

    14.91°C

    0.0

    0.1

    0.2

    0.3

    0.4

    Tan

    Del

    ta

    -100 -75 -50 -25 0 25 50

    Temperature (°C)

    PVC - Initial Condition PVC - Aged for 90 days PVC Aged for 150 days

    Universal V2.4D TA Instruments

  • δ

  • ��� ���� ���� ���� ���� ����� ����� �����

    ���

    ���

    ���

    ���

    ���

    ����

    ���

    ���

    ���

    ���

    ���

    ���

    ���

    ������

    ������

    ����������

    ���

    ��

    ����������

    ������������

    �����������������

    ��

    �No Solvent�

    ��

    �Immersed in Solvent

    ��������������������������������������

  • (E" or G")(E' or G')

    (E" or G")

    (E' or G')

    log Frequency Temperature

  • aT=140aT=150

    aT=160

  • °

  • Amplitude within the linear region

  • Quickstart e-Training Courses

  • The World Leader in Thermal Analysis, Rheology, and Microcalorimetry

  • Appendix 1

  • ≈ ≈ ≈

    ° °°

  • ±

  • ° °°

    Thermocouple

  • AR

    ES

    -G2

    Allows for alignment of upper and lower geometries.Requires alignment bar (3 pt bending, cantilever) or steel shim (tension)

    DH

    R

  • Axial mapping is used to relate the desired displacement with the control of the magnetic bearing. Better understand inertial effects with

    the current geometry mass.