2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ...

22
2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣ 2.1. ΙΞΩ∆ΕΣ Το ιξώδες αποτελεί εκείνη την ιδιότητα του ρευστού που αντιπροσωπεύει αντίσταση στη ροή. Πιο συγκεκριμένα, κάποιος πιο τεχνικός ορισμός θα αναφερόταν στην αντίσταση σε ροή διάτμησης και στην ονομασία διατμητικό ιξώδες. Έστω ρευστό μεταξύ δύο επίπεδων παράλληλων πλακών εμβαδού A και ανοίγματος Η, όπως φαίνεται στο επόμενο σχήμα. H F A U u y x Η απαιτούμενη δύναμη για να κινηθεί η επάνω πλάκα με ταχύτητα U είναι: F AU H Το πηλίκο F/A ονομάζεται διατμητική τάση τ και το πηλίκο U/H αντιπροσωπεύει την κλίση (βαθμίδα) ταχύτητας du/dy, και ονομάζεται ρυθμός διάτμησης γ . Επομένως, μπορούμε να γράψουμε: τ η ηγ = = du dy

Transcript of 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ...

Page 1: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-1

2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣ

2.1. ΙΞΩ∆ΕΣ

Το ιξώδες αποτελεί εκείνη την ιδιότητα του ρευστού που

αντιπροσωπεύει αντίσταση στη ροή. Πιο συγκεκριµένα, κάποιος πιο

τεχνικός ορισµός θα αναφερόταν στην αντίσταση σε ροή διάτµησης και

στην ονοµασία διατµητικό ιξώδες.

Έστω ρευστό µεταξύ δύο επίπεδων παράλληλων πλακών εµβαδού

A και ανοίγµατος Η, όπως φαίνεται στο επόµενο σχήµα.

H

FA U

uy

x

Η απαιτούµενη δύναµη για να κινηθεί η επάνω πλάκα µε ταχύτητα U

είναι:

F AUH

Το πηλίκο F/A ονοµάζεται διατµητική τάση τ και το πηλίκο U/H

αντιπροσωπεύει την κλίση (βαθµίδα) ταχύτητας du/dy, και ονοµάζεται

ρυθµός διάτµησης γ . Εποµένως, µπορούµε να γράψουµε:

τ η ηγ= =dudy

Page 2: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-2

όπου η είναι ο συντελεστής του (διατµητικού) ιξώδους. Στο σύστηµα

µονάδων SI η µονάδα ιξώδους είναι το Pa.s. Ισχύει ότι 1 Pa.s = 10 poise.

Tο ιξώδες του αέρα είναι περίπου 10-5 Pa.s, το ιξώδες του νερού

10-3 Pa.s, διαφόρων αλειφών 1∼10 Pa.s, συροπιών 10∼102 Pa.s, τηγµάτων

πλαστικών 102∼105 Pa.s, ζύµης 103∼105 Pa.s, τυριών 107∼108 Pa.s. Για τα

υγρά το ιξώδες µειώνεται µε αύξηση της θερµοκρασίας.

Για τήγµατα πολυµερών το ιξώδες µειώνεται µε την αύξηση του

ρυθµού διάτµησης (du/dy) λόγω µοριακών ευθυγραµµίσεων και

αποπεριελίξεων (disentanglements) των αλυσίδων. Χαρακτηριστική τιµή

του ιξώδους αποτελεί το οριακό ιξώδες για µηδενικό ρυθµό διάτµησης

( γ → 0 ), που συχνά συµβολίζεται µε η0.

Το ιξώδες µηδενικής διάτµησης (όπως αναµένεται) αποτελεί

συνάρτηση του µοριακού βάρους του πολυµερούς. Αυτή η σχέση

φαίνεται σχηµατικά στο παρακάτω διάγραµµα.

log Mw

log η 0 κλίση 3.4

κλίση 1

Mc

για Mw < Mc η0 = K1 M

για Mw > Mc η0 = K1 Mw3.4

Page 3: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-3

Σαν “κρίσιµο µοριακό βάρος” Mc θεωρείται εκείνο το µοριακό

βάρος όπου αρχίζουν να γίνονται αισθητές οι περιελίξεις (entanglements).

Το Mc ποικίλει από πολυµερές σε πολυµερές και εξαρτάται από το

µοριακό βάρος µεταξύ περιελίξεων (Me) και από την ακαµψία των

αλυσίδων. Ορισµένες τυπικές τιµές δίνονται στον παρακάτω πίνακα.

Πίνακας 2-1: Κρίσιµο µοριακό βάρος για περιελίξεις.

ΠΟΛΥΜΕΡΕΣ Me Mc

PE 1250 3800PMMA 8000 27500

PS 19000 36000

Για το χαρακτηρισµό των πολυµερών συχνά χρησιµοποιείται το

ιξώδες διαλύµατος. Όταν ένα πολυµερές διαλύεται σε κάποιο διαλύτη,

το ιξώδες του διαλύµατος αυξάνει µε τη συγκέντρωση C. Tα ιξώδη του

καθαρού διαλύτη και του διαλύµατος µπορούν να µετρηθούν

χρονοµετρώντας τη ροή τους µέσα από τριχοειδή σωλήνα. Για τον

περαιτέρω χαρακτηρισµό των πολυµερών γίνεται χρήση των επόµενων

ιδιοτήτων που ορίζονται ως εξής:

Σχετικό (relative) ιξώδες rsolution

solventη

ηη=

Ειδικό (specific) ιξώδες η ηη η

ηsp rsolution solvent

solvent= − =

−1

Αναγόµενο (reduced) ιξώδες redspη

η=

C

Εσωτερικό (inherent) ιξώδες inhrη

η=

lnC

Εγγενές (intrinsic) ιξώδες [ ]ηη

=

sp

CC 0

Page 4: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-4

Tο εγγενές ιξώδες βρίσκεται µε γραφική παράσταση του όρου ηsp C σαν

συνάρτηση του C και ακόλουθη προέκταση σε µηδενική συγκέντρωση.

Tο επωνοµαζόµενο µοριακό βάρος µέσου ιξώδους (βλ. κεφάλαιο

1) βρίσκεται από την εξίσωση των Mark-Houwink:

[ ]η α= KM

όπου K και α είναι σταθερές που προσδιορίζονται πειραµατικά και

δίνονται στη βιβλιογραφία για διάφορα συστήµατα.

2.2. ΨΕΥ∆ΟΠΛΑΣΤΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΠΟΛΥΜΕΡΩΝ(∆ΙΑΤΜΗΤΙΚΗ ΛΕΠΤΥΝΣΗ)

Ο νόµος του Nεύτωνα για το ιξώδες γράφεται

( )[ ]

µτ διατµητικη ταση

ρυθµος διατµησης

µ

= =

=> ⋅

du dy (Pa)

(1 / s)Pa s

/

Το ιξώδες αντιπροσωπεύει αντίσταση στη ροή. Για Νευτωνικά ρευστά

αποτελεί σταθερά (ανεξάρτητη από το ρυθµό διάτµησης). Για πολυµερικά

διαλύµατα και τήγµατα το ιξώδες µειώνεται µε την αύξηση του ρυθµού

διάτµησης. Αυτή η συµπεριφορά ονοµάζεται ∆ΙΑΤΜΗΤΙΚΗ

ΛΕΠΤΥΝΣΗ και οφείλεται σε ευθυγράµµιση και αποπεριέλιξη των

µακρών πολυµερικών αλυσίδων όταν υπόκεινται σε διάτµηση. Για τα

πολυµερή δεν µπορούµε να µιλάµε για σταθερά ιξώδους µ αλλά µάλλον

για

ιξωδεςδιατµητικη ταση

ρυθµος διατµησης=

(Pa) (1 / s)

ητ τ

γσυναρτηση του γ= = ⇒

du dy

Page 5: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-5

Ένας απλός τρόπος για την προσαρµογή δεδοµένων “ιξώδους” για

πολυµερικά τήγµατα είναι ο εκθετικός νόµος των Ostwald-de Waele

τ γ= m n

ή η γ= −m n 1

m => [Pa.sn] και n => σταθερά (αδιάστατη).

Ο συντελεστής m ονοµάζεται ∆ΕΙΚΤΗΣ ΣΥΝΕΠΕΙΑΣ (όσο µεγαλύτερο

το m τόσο πιο ιξώδες το τήγµα) και ο εκθέτης n ονοµάζεται ∆ΕΙΚΤΗΣ

ΡΕΟΛΟΓΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ και δείχνει το βαθµό µη Νευτωνικής

συµπεριφοράς του ρευστού (n = 1 σηµαίνει Νευτωνικό ρευστό, ενώ για

πολυµερή µε συµπεριφορά ∆ΙΑΤΜΗΤΙΚΗΣ ΛΕΠΤΥΝΣΗΣ, n < 1).

Ο εκθετικός νόµος δίνει: ( )log log logη γ= + −m n 1

• Ο δείκτης συνέπειας m ισούται µε το ιξώδες η όταν γ = −1 1s .

• Σε διάγραµµα log-log, η vs γ δίνει ευθεία µε κλίση (n-1).

10

100

1000

10000

0.1 1 10 100 1000

γ (s-1)

η (P

a.s)

κλίση = n-1

Tυπικά ∆εδοµένα

η = m (για γ = 1s-1)

.

.

Page 6: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-6

• Ο εκθετικός νόµος επιτρέπει καλή προσαρµογή δεδοµένων

ιξώδους για µεγάλους ρυθµούς διάτµησης, αλλά για χαµηλούς

ρυθµούς διάτµησης τα πολυµερή συµπεριφέρονται σαν

Νευτωνικά ρευστά µε σταθερό ιξώδες (π.χ. για τιµές ρυθµού

διάτµησης γ < 3 s-1).

• Ο εκθετικός νόµος ισχύει και δίνει καλά αποτελέσµατα για τις

περισσότερες διεργασίες πολυµερών, επειδή τα γ είναι

συνήθως µεταξύ 100 s-1 και 5000 s-1.

Ο δείκτης συνέπειας m εξαρτάται εκθετικά από τη θερµοκρασία. Μια

συνηθισµένη σχέση που χρησιµοποιείται για την περιγραφή αυτής της

εξάρτησης είναι η παρακάτω εκθετική

( )[ ]m m b T T= − −0 0exp

όπου mo είναι ο δείκτης συνέπειας στη θερµοκρασία αναφοράς To.

TΥΠΙΚΕΣ ΤΙΜΕΣ

Για πολυµερικά τήγµατα σε συνήθεις συνθήκες επεξεργασίας ισχύουν:

m=1,000 - 100,000 Pa.sn

n = 0.2 - 0.8

b = 0.01 - 0.1 oC-1

Για σύνηθες πολυστυρένιο (PS) του εµπορίου παρατίθενται οι επόµενες

τιµές που προήλθαν από προσαρµογή δεδοµένων ιξώδους στον εκθετικό

νόµο.

Page 7: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-7

mo = 10,800 Pa.sn

n = 0.36

To = 200oC

b = 0.022oC-1

Η τιµή b = 0.022oC-1 αντιπροσωπεύει µείωση ιξώδους κατά ∼20% για

αύξηση θερµοκρασίας 10oC.

Σηµείωση: Για ισοθερµοκρασιακές ροές µπορούµε να

χρησιµοποιήσουµε το µοντέλο του εκθετικού νόµου για το ιξώδες και να

επιλύσουµε προβλήµατα πρακτικού ενδιαφέροντος µε αναλυτικές

µεθόδους λύσης.

2.2.1. ΤΑΣΕΙΣ ΚΑΙ ∆ΙΑΤΗΡΗΣΗ ΟΡΜΗΣ

Κατά τη διάρκεια της ροής αναπτύσονται τάσεις είτε

εφαπτοµενικά (διατµητικές) είτε κάθετα (κάθετες) στις επιφάνειες.

AF

∆ΙΑΤΜΗΤΙΚΗΤΑΣΗ = F/A

F A

ΚΑΘΕΤΗ ΤΑΣΗ = F/A

Page 8: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-8

Η πίεση είναι κάθετη τάση. Ορισµένοι τεχνικοί υπολογισµοί µπορούν να

γίνουν εύκολα για απλά πεδία διατµητικής ροής. Για παράδειγµα, αν το

ιξώδες του ρευστού είναι γνωστό, η δύναµη που απαιτείται για την κίνηση

της µιας πλάκας σε ροή µεταξύ επίπεδων παραλλήλων πλακών (βλ.

παρακάτω σχήµα) δίνεται από τη σχέση

H

FA U

uy

x

F A UH

A= ⋅ =τ η

Αν έχουµε (σχεδόν) παράλληλο πεδίο ροής µεταξύ δύο

συγκεντρικών κυλίνδρων,

R U

µπορούµε εύκολα να υπολογίσουµε τη ροπή (T0) από τη σχέση

T F R AR0 = × = τ

όπου R = απόσταση από τον άξονα περιστροφής.

Page 9: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-9

Η ισχύς (P0) που απαιτείται για να περιστραφεί ο µέσα κύλινδρος δίνεται

από τη σχέση

P0 = FU = τAU

Για την επίλυση γενικών προβληµάτων ροής πρέπει να

θεωρήσουµε την εξίσωση διατήρησης της ορµής που γράφεται µε λόγια:

δυναµειςαδρανειας

δυναµειςπιεσης

δυναµειςιξωδωντασεων

δυναµειςβαρυτητας

=

+

+

( )

Mαθηµατικά η παραπάνω εξίσωση γράφεται ως εξής:

ρ∂∂

τ ρVt

V V P g+ ⋅∇

= −∇ +∇⋅ +~~

Οι όροι του αριστερού σκέλους της εξίσωσης αντιπροσωπεύουν δυνάµεις

αδράνειας, ενώ οι όροι του δεξιού σκέλους αντιπροσωπεύουν δυνάµεις

πίεσης, δυνάµεις (ιξωδών) τάσεων και δυνάµεις βαρύτητας,

αντίστοιχα. Τα πολυµερή σε κατάσταση τήγµατος χαρακτηρίζονται από

εξαιρετικά υψηλά ιξώδη (περίπου ένα εκατοµµύριο φορές πιο ιξώδη από

το νερό).

Ο αριθµός Reynolds (Re=ρVD/µ) είναι πολύ µικρός κάτω από

συνήθεις συνθήκες επεξεργασίας (Re=10-4 ∼ 10-1). Εποµένως, η ροή των

πολυµερών είναι πάντοτε ΣΤΡΩΤΗ.

• Οι δυνάµεις συναγωγής (αδράνειας) δεν είναι σηµαντικές

("ΕΡΠΟΥΣΑ ΡΟΗ").

• Οι δυνάµεις βαρύτητας είναι συνήθως αµελητέες.

• Η ροή κυριαρχείται από την ισορροπία δυνάµεων πίεσης και

ιξώδους (τάσεων).

Page 10: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-10

0 = −∇ +∇⋅P ~~τ

• Η πίεση P αποτελεί ΒΑΘΜΩΤΟ µέγεθος.

• Η ταχύτητα ( )V V V Vx y z≡ , , αποτελεί ∆ΙΑΝΥΣΜΑ µε 3

συνιστώσες στις κατευθύνσεις x, y και z.

• Οι τάσεις ορίζονται σαν το πηλίκο ∆ύναµη/Εµβαδό, και

µπορούν να είναι κάθετες ή εφαπτοµενικές (διατµητικές).

• Οι τάσεις αποτελούν ΤΑΝΥΣΤΗ µε 9 συνιστώσες:

~~ττ τ ττ τ ττ τ τ

=

xx xy xz

yx yy yz

zx zy zz

Σύµβαση γραφής των συνιστωσών των τάσεων: τ ij

Ο πρώτος δείκτης είναι κάθετος στο επίπεδο όπου δρά η τάση, ενώ ο

δεύτερος δείκτης αναφέρεται στην κατεύθυνση της τάσης.

yx

z

τxyτxx

τxzτzy

τzx

τzz

τyyτyx

τyz

τxx, τyy, τzz => Κάθετες τάσεις

τxy, τyx, τyz, τzy, τzx, τxz => ∆ιατµητικές τάσεις

Page 11: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-11

Για διδιάστατη ροή η ισορροπία δυνάµεων φαίνεται στο παρακάτω

σχήµα:

∆x

z

x

y

P Px

x+∂∂

∆P

τ ∂τ∂

+y

y∆

τ∆x∆x

∆y

Έτσι έχουµε

P y z P Px

x y zy

y x z x z∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆− +

= +

− =

∂∂

τ∂τ∂

τ 0

το οποίο δίνει

0 = − +∂∂

∂τ∂

Px y

Σε ροή µονής κατεύθυνσης υπάρχει ισορροπία της πίεσης στην

κατεύθυνση ροής µε την αντίθετη διατµητική τάση. Συµβολικά αυτό

γράφεται ως εξής:

( )( )

( )0 = − +

∂∂ κατευθυνση ροης

∂ διατµητικη ταση

∂ κατευθυνση καθετη στη ροηP

Η παραπάνω έκφραση αποτελεί απλούστευση της εξίσωσης

διατήρησης της ορµής για έρπουσα ροή:

0 = −∇ +∇⋅P ~~τ

Η γενική εξίσωση διατήρησης της ορµής αποτελεί ανυσµατική

εξίσωση (δηλ. έχει συνιστώσες στις κατευθύνσεις x, y και z).

Page 12: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-12

Για διδιάστατες ροές η γενική εξίσωση ορµής γράφεται

0 = − + +∂∂

∂τ∂

∂τ

∂Px x y

xx yx

0 = − + +∂∂

∂τ

∂τ

∂Py x y

xy yy

και η εξίσωση διατήρησης της µάζας (εξίσωση συνέχειας) γράφεται

∂∂

∂Vx

Vy

x y+ = 0

Για ροές ΜΟΝΗΣ ΚΑΤΕΥΘΥΝΣΗΣ µπορεί εύκολα να αποδειχτεί

ότι τελικά αποµένει µια µόνο εξίσωση (στην κατεύθυνση της ροής), δηλ.

για ροή µόνο στην κατεύθυνση x,

επειδή ∂∂

∂∂τ∂

∂τ

∂Py

Vy y y

= = = =0 0 0, ,y xx yy

έχουµε 0 = − +∂∂

∂τ

∂Px y

yx

2.2.2. ΡΟΕΣ ΜΟΝΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Οι παρακάτω τύποι ροής είναι ιδιαίτερης σηµασίας σε πρακτικές

εφαρµογές. Πρόκειται για ροές ρευστών σε µια µόνο κατεύθυνση.

• ΕΠΙΠΕ∆Η ΡΟΗ (στη x-κατεύθυνση)

• AΞΟΝΟΣΥΜΜΕΤΡΙΚΗ ΡΟΗ (στη z-κατεύθυνση)

• ΑΚΤΙΝΙΚΗ ΡΟΗ µεταξύ δίσκων (στην r-κατεύθυνση)

• ∆ΑΚΤΥΛΙΚΗ ΡΟΗ COUETTE (ΟΠΙΣΘΕΛΚΟΥΣΑ)

(στη θ-κατεύθυνση)

Οι εξισώσεις διατήρησης για τις απλές αυτές ροές παραθέτονται στα

παρακάτω.

Page 13: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-13

2.2.2.1. Επίπεδη Ροή

x

y

x-κατεύθυνση: 0 = − +∂∂

∂τ

∂Px

yx

y

όπου τ η∂∂yx

x

y=

V

2.2.2.2. Aξονοσυµµετρική Ροή

r

z

z-κατεύθυνση: ( )0 1= − +

∂∂

∂∂

τPz r

rr rz

όπου τ η∂∂rz

z

r=

V

2.2.2.3. Ακτινική Ροή (Συµπίεσης)

z

r

συµπίεση

r -κατεύθυνση ( )0 = − +∂∂

∂∂

τPr z zr

όπου τ η∂∂zr

r

z=

V

Page 14: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-14

2.2.2.4. ∆ακτυλική Ροή Couette

θ

(θ-κατεύθυνση) ( )0 1 12

2= − +r

Pr

r∂∂θ

∂∂

τ θr r

όπου τ η∂∂θ

θr =

rr

Vr

και για ρευστά που υπακούουν τον εκθετικό νόµο

η γ= −m n 1

2.2.3. ΡΟΗ ΟΠΙΣΘΕΛΚΟΥΣΑΣ ΜΕΤΑΞΥ ΕΠΙΠΕ∆ΩΝ ΠΛΑΚΩΝ

Η ροή οπισθέλκουσας (drag flow, ονοµαζόµενη επίσης ροή

Couette) λαµβάνει χώρα όταν µια από τις πλάκες κινείται µε ταχύτητα V0

ενώ η άλλη παραµένει ακίνητη. ∆εν χρειάζεται βαθµίδα πίεσης για τη

δηµιουργία του πεδίου ροής.

V0

xyH

0 = − +∂∂

∂τ∂

Px y

yx

∂τ∂

yx

y= 0

τ yx const=

Page 15: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-15

mdVdy

dVdy

nx x const

=1

dVdy

x const=

οπότε προκύπτει V C y Cx = +1 2

Οριακές συνθήκες:

y=0, Vx=0

y=H, Vx=Vo

οπότε προκύπτει Vx=(Vo/H)y

Η µέση ταχύτητα δίνεται από

Vavg=(1/2)Vo

Η ογκοµετρική παροχή για αγωγό πλάτους W δίνεται από

Q=(1/2)VoHW

Η έκφραση αυτή δίνει το ποσό ρευστού που σύρεται από την κινούµενη

πλάκα.

2.2.4. PΟΗ ΥΠΟ ΠΙΕΣΗ ΡΕΥΣΤΟΥ ΕΚΘΕΤΙΚΟΥ ΝΟΜΟΥΜΕΤΑΞΥ ΠΑΡΑΛΛΗΛΩΝ ΠΛΑΚΩΝ

x

y

W

L

∆P

Page 16: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-16

Εξίσωση Ορµής: 0 = − +∂∂

∂τ

∂Px y

yx

Βαθµίδα πίεσης: − =∂∂Px

PL∆

Εκθετικός νόµος: τ η∂∂

γ∂∂

∂∂

∂∂yx

x x x x= = =−

−Vy

m Vy

m Vy

Vy

nn

11

Η απόλυτη τιµή | | χρειάζεται επειδή µερικές φορές ∂Vx/∂y παίρνει

αρνητικές τιµές, και (n-1) < 0 για τα πολυµερή. Έτσι έχουµε,

∂τ

∂yx

yPL

= −∆

τyx = − +∆PL

y C1

m Vy

Vy

PL

y Cn

∂∂

∂∂

x x

= − +1

1∆

Αφού ∂∂Vy

x = 0 στο y = 0 (από συµµετρία)

C1 = 0

m Vy

Vy

PL

yn

∂∂

∂∂

x x

= −1

Προσοχή σε ένα λεπτό σηµείο εδώ: Tο δεξί σκέλος της εξίσωσης είναι

αρνητικό, και εποµένως ∂∂Vy

x πρέπει να είναι αρνητικό.

∂∂Vy m

PL

yn

nx = −

11

1∆

( )V n

n mPL

y Cn

nn

x = − +

++

11

11

2∆

Page 17: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-17

Μετά την εφαρµογή της συνθήκης µη ολίσθησης Vx=0 στο y=Η και

ανακατάταξη, το προφίλ της ταχύτητας δίνεται από

V nn

Hm

PL

yH

n nn

n

x = +

++

11

11 1

Η µέγιστη ταχύτητα στο κέντρο για y=0 δίνεται από

V nn

Hm

PL

n n

max = +

+

1

11

και

V V yH

nn

x max= −

+

11

Η µέση ταχύτητα δίνεται από

VV dzdy

dzdy

V dy

dy

nn

VH

H

H

Havgx

y

max= = =++

∫∫∫∫

12 1

και

V nn

V yH

nn

x avg=++

+

2 11

11

Η ογκοµετρική παροχή ανά µονάδα πλάτους δίνεται από

QW

V H nn m

PL

Hn

n= =+

+

avg 2 22 1

11

1 2∆

και

Page 18: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-18

V nn

QWH

yH

nn

x =++

+

2 11 2

11

και η πτώση πίεσης δίνεται από

( )

∆P mLn

nQW

Hnn

n

=+

− +2 12

2 1

ή

( )∆P mH Ln

nQW

nn

=+

− +2 1 2 12

Από την προηγούµενη σχέση είναι εύκολο να δούµε ότι η τάση είναι

γραµµική

τ yx = −∆PL

y

Η µέγιστη τιµή συµβαίνει στο τοίχωµα

τw = −∆PL

H

Το αρνητικό πρόσηµο απλά δείχνει ότι όταν η ποσότητα αυτή

πολλαπλασιάζεται µε το εµβαδόν, προκύπτει δύναµη που εξασκείται από

την πλάκα στο ρευστό, που έχει φορά προς την αρνητική x-κατεύθυνση.

Η δύναµη που εξασκείται από το ρευστό στο διαβρεχώµενο τοίχωµα

πρέπει εποµένως να είναι θετική. Η γραµµική συµπεριφορά των

διατµητικών τάσεων στο ρευστό εκφράζεται συνήθως σαν

ττ w

yH

=

όπου το τw λαµβάνεται συµβατικά σαν θετική ποσότητα.

Page 19: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-19

Ο ρυθµός διάτµησης δίνεται από

max maxγ∂∂

= = −+

= −+

+

Vy

nn

VH

y nn

VH

yHn

n

nnx 1 1 1 1

1

11

Ο ρυθµός διάτµησης στο τοίχωµα δίνεται από (απόλυτη τιµή)

maxγ wn

nV

H=

+ 1

ή

γ wnn

VH

=+2 1 avg

ή

γ wnn

QWH

=+2 1 2

4 2

Η µέγιστη διατµητική τάση στο τοίχωµα δίνεται επίσης από

w wn

n n

m m nn

VH

m nn

QWH

τ ηγ γ= = =

=

+ +max1 2 1 24 2

2.2.5. PΟΗ ΥΠΟ ΠΙΕΣΗ ΡΕΥΣΤΟΥ ΕΚΘΕΤΙΚΟΥ ΝΟΜΟΥΣΕ ΚΥΛΙΝ∆ΡΙΚΟ ΑΓΩΓΟ

r

zL

∆P

Εξίσωση ορµής:

( )0 1= −

∂∂

+∂∂

Pz r r

r rzτ

Page 20: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-20

−∂∂

=Pz

PL∆

rzPL

r Cτ = − +∆

2 1

rzz

nzm V

rVrτ =

∂∂

∂∂

−1

Οριακή συνθήκη:

r Vr

z=∂∂

=0 0,

r R Vz= =, 0

Η επίλυση δίνει τα παρακάτω:

V V rRz

nn

= −

+

max 11

V nn

Rm

PL

n+ n

max = +

1 2

11

V nn

Vavg =++1

3 1 max

Q nn+ m

DPL

Rn

n=

3 11

2

11 3

( )∆P mL n+

nQ R

nn

n

=

− +

2 3 1 3 1

π

ή

( )∆P mR Ln

Qnn

= +

− +2 313 1

π

Page 21: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-21

για n=1 έχουµε τη γνωστή σχέση Hagen-Poiseuille για Νευτωνικά

ρευστά. Ροές υπό πίεση αναφέρονται επίσης σαν ροές Poiseuille.

2.2.5.1. Προφίλ ταχύτητας

n>1 διατµητική πάχυνση

n = 1 Nευτωνικό

n<1 διατµητική λέπτυνση

Για ρευστά διατµητικής λέπτυνσης, το προφίλ της ταχύτητας είναι πιο

εµβολικό από το παραβολικό προφίλ των Νευτωνικών ρευστών.

Από τις προηγούµενες σχέσεις προκύπτει ότι η διατµητική τάση

είναι γραµµική συνάρτηση της ακτίνας

τrzPL

r= −∆2

Η µέγιστη τιµή συµβαίνει στο τοίχωµα

τwPL

R= −∆2

Για τη σηµασία του αρνητικού πρόσηµου, βλ. το παράδειγµα της

προηγούµενης παραγράφου (ροή µεταξύ δύο παράλληλων πλακών).

Η γραµµικότητα της διατµητικής τάσης εκφράζεται συχνά σαν

ττw

rR

=

και το τw λαµβάνεται σαν θετικό.

Page 22: 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ ΑΓΩΓΟΥΣold-2017.metal.ntua.gr/uploads/3455/381/Chap2-1gr.pdf2-1 2. ΡΟΗ ΠΟΛΥΜΕΡΙΚΩΝ ΤΗΓΜΑΤΩΝ ΣΕ

2-22

Ο ρυθµός διάτµησης δίνεται από

max maxγ =∂∂

= −+

= −+

Vr

nn V

Rr n

n V RrRn+

n

nn

z 1 1 1 11

11

Ο ρυθµός διάτµησης στο τοίχωµα δίνεται από (απόλυτη τιµή)

wn

nV

Rmaxγ =

+1

ή

γ wavg=

+3 1nn

VR

ή

γπw =

+

3 14

43

nn

QR

Η µέγιστη διατµητική τάση στο τοίχωµα δίνεται επίσης από

τ η γ γw w= = =+

maxm m nn

VRw

nn1

ή

τπw =

+

m n

nQR

n3 1

44

3

Ο όρος 4Q/πR3 χρησιµοποιείται στην παραπάνω εξίσωση επειδή

αντιπροσωπεύει το ρυθµό διάτµησης για Nευτωνικά ρευστά (n=1). Για µη

Νευτωνικά ρευστά αναφέρεται συνήθως σαν φαινοµενικός ρυθµός

διάτµησης.