13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 ›...

21
13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra H. Techet MIT Department of Ocean Engineering ©A. H. Techet 2004 1. Recap of Linear Wave Problem 2. Phase Speed 3. Particle motion beneath waves

Transcript of 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 ›...

Page 1: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

1

13.42 Lecture #2Linear Waves

February 5, 2004Alexandra H. Techet

MIT Department of Ocean Engineering©A. H. Techet 2004

1. Recap of Linear Wave Problem2. Phase Speed3. Particle motion beneath waves

Page 2: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

2

Ocean Waves

Page 3: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

3

Linear Wave ProblemLinear free-surface gravity waves can be characterized by their amplitude, a, wavelength, λ, and frequency, ω.

Page 4: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

4

Conditions for Linear Waves

• Linear wave theory assumes that the ratio of the wave height to wavelength is less than 1/7. Above this value waves begin to exhibit non-linear behavior, eventually breaking.

/ 1/ 7h λ <

Page 5: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

5

Conservation of Mass

2 2

2 22 0

x zφ φφ ∂ ∂

∇ = + =∂ ∂

V φ= ∇

The velocity potential, φ, must satisfy the Laplace Equationin order for mass to be conserved:

( )0V∇× =Assuming ideal flow: incompressible, inviscid & irrotational

Define a velocity potential, φ, such that

Page 6: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

6

Boundary Conditions

• Body boundary condition: there is no fluid flux through (normal to) a solid surface such as a body or the ocean floor.

• On the ocean floor, @ , assuming a horizontal orientation:

0Bnφ∂=

0wzφ∂

= =∂

z H= −

ˆBn

Page 7: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

7

Free Surface Conditions• Dynamic Boundary Condition: Pressure is constant

across the interface:

21 ( )2 atmp gz c t p

tφρ φ∂ = − + ∇ + + = ∂

21 ( , ) 02

g x ttφρ φ η∂ + ∇ + = ∂

21 1( , )2

x tg t

φη φ∂ = − + ∇ ∂

( , )z x tη=

Let the arbitrary Bernoulli constant equal atmospheric pressure: c(t) = patm . Substitute η(x,t) for z:

on

Page 8: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

8

Free surface Conditions• Kinematic Boundary Condition: Once a particle on the

surface, it remains there always. ( )( ) ( ), ,p p p p p pz z x x t t x t x t

x tη ηδ η δ δ η δ δ∂ ∂

+ = + + = + +∂ ∂

( , )p pz x tη=

p pz x tx tη ηδ δ δ∂ ∂

= +∂ ∂

,p px zu w

t tδ δδ δ

= =

We can write the velocity of a particle under the wave as:

w ux tη η∂ ∂

= +∂ ∂

( , )z x tη=, on

Therefore we have the kinematic boundary condition (KBC)

Page 9: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

9

Free surface Conditions• Kinematic Boundary Condition:

w ux tη η∂ ∂

= +∂ ∂

( , )z x tη=, on

Substitute the velocity potential into the KBC:

,u wx dzφ φ∂ ∂

= =∂

z t x xφ η φ η∂ ∂ ∂ ∂= +

∂ ∂ ∂ ∂( , )z x tη=, on

Page 10: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

10

Non-dimensional variables*aη η=Wave Elevation:

*u a uω=x-velocity:

*w a wω=z-velocity:

*t tω =Time:

*x xλ=Length:

*aφ ωλ φ=Velocity Potential: *d a dφ ωλ φ=

*1dt tω=

*dx dxλ=

Page 11: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

11

Linear Waves

/ 1/ 7h λRecall for linear waves:

We need to linearize the boundary conditions. For starters lets look at the terms from the dynamic boundary condition:

2 22 * *

* *2 2

* *2

* *

x xa a axa

t t t

φ φφω

φ φ φω λ λ λ

∂ ∂∂ ∂ ∂∂ = = ≈

∂ ∂ ∂∂ ∂ ∂

Therefore:2

x tφ φ∂ ∂

∂ ∂

Page 12: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

12

Linearized DBC & FBC:

21 1( , )2

x tg t

φη φ∂= − + ∇

∂ z t x x

φ η φ η∂ ∂ ∂ ∂= +

∂ ∂ ∂ ∂

On :( , )z x tη=DBC KBC

Neglecting higher order terms, and expanding φ(x,z,t) about z=0, these conditions become:

2

2 0gt zφ φ∂ ∂+ =

∂ ∂; on 0z =

1and ( , )x tg t

φη ∂= −

Page 13: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

13

Where is the dispersion relationship

A Solution to the Laplace Equation2 2

2 22 0

x zφ φφ ∂ ∂

∇ = + =∂ ∂

( )1( , , ) sinax z t f kx tkωφ ω ψ= − − +

( )( )1

coshsinh

k z Hf

kH + =

( )( )2

sinh

sinhk z H

fkH

+ =

( )1( , , ) cosdu x z t a f kx tdxφ ω ω ψ= = − − +

( )2( , , ) sindw x z t a f kx tdzφ ω ω ψ= = − +

( )( , ) cosx t a kx tη ω ψ= − +

2 tanhgk kHω =

sin cos , cos sin

sinh cosh , cosh sinh

d dx x x xdx dxd dx x x xdx dx

= = −

= =

Page 14: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

14

Pressure Under a Wave

nd

2

hydrostatic2 order

12

p gztφρ ρ φ ρ∂

= − + ∇ +∂

Dynamic pressure due to linear surface gravity waves:

( ) ( )2

1 cosdap f z kx wt

t kφ ωρ ρ ψ∂

= − = − +∂

( ) ( )2

1 ,dp f z x tkωρ η=

2

dispersion ret la atinh onshipg kHkω

= ⇔

Page 15: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

15

Motion of a Fluid Particle

Page 16: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

16

Particle Orbits

Page 17: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

17

Particle Orbits in Deep Water

Circles with exponentiallydecreasing radius

Particle motion extinct at z ≅ -λ/2

( )1H kH→∞

1 2( ) ( ) kzf z f z e≅ ≅

( )22 2 kzp p a eξ η+ =

2 dispersion relationshipgkω ⇔=

Page 18: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

18

Particle acceleration and velocity

Page 19: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

19

at the free surface…The intersection between the circle on which ξpand ηp lie and the elevation profile η(x,t) define the location of the particle.

This applies at all depths, z: η1(x,z,t) = a ekz cos(kx-ωt+ψ) = η(x,t) ekz

Page 20: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

20

Phase Speed

Velocity at which a wave crest is moving

Page 21: 13.42 Lecture #2 Linear Waves - MITweb.mit.edu › 13.42 › www › handouts › 2004 › lecture2slides2004_1.p… · 1 13.42 Lecture #2 Linear Waves February 5, 2004 Alexandra

21

Group Speedη(

t, x

= 0)

t

Waves packets (or envelopes) move at the Group Speed

η(x,t) = a cos(ωt-kx)