Zhijie Chen, Masaya Miyahara, and Akira Matsuzawa

Post on 13-Apr-2022

6 views 0 download

Transcript of Zhijie Chen, Masaya Miyahara, and Akira Matsuzawa

Zhijie Chen, Masaya Miyahara, and

Akira Matsuzawa

Tokyo Institute of Technology, Japan

A stability-improved single-opamp third-order ΣΔ modulator by using a

fully-passive noise-shaping SAR ADC and passive adder

Matsuzawa

& Okada LabMatsuzawa Lab.Tokyo Institute of Technology

2

Outline

• Motivation

• Traditional implementation

• Proposed architecture

• Circuit and Measurement Results

• Conclusion

3

Outline

• Motivation

• Traditional implementation

• Proposed architecture

• Circuit and Measurement Results

• Conclusion

Motivation

4

• Noise shaping for achieving high resolution

• Usually, 1 opamp --- 1 integrator

• Most of power comes from opamp

• Target: how to reduce power? Reduce No. of opamp?

A sigma delta modulator (SDM) architecture:

X

-Integrators

Y

Quantizer

DAC

101 102 103 104 105 106-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0PSD of Sigma-Delta Modulator

Frequency [Hz]P

SD

[d

B]

Order of Noise

Shaping

Bandwidth

Over-sampling

Rate

Noise shaping

5

Outline

• Motivation

• Traditional implementation

• Proposed architecture

• Circuit and Measurement Results

• Conclusion

Φ1

C1i

C2

Vip

A

Φ1 Φ1

Φ2 Φ1 Φ2

DAC1

VOP

Φ1 Φ2

Φ1

Φ2

Φ2

C4iVOP Φ1 Φ1

DAC1

C3

C5Φ2 Φ2

First Integrator

Second Integrator

Feed-forward

Ф2a Ф2b

Ф2b Ф2a

Ф2a Ф2bФ2b Ф2cФ2c Ф2a

DAC3

Ф1a Ф1b

Ф1b Ф1a

Ф1a Ф1bФ1b Ф1a

Φ1 Φ1

Φ2 C3

DAC2

Φ2 -z-1

1

Ф2Ф1 Ф2Ф1Ф2

n n+1Ф1

n-1

Ф1a Ф1a

Ф1b

Ф2b

Ф2a

Ф2c

An

alo

g:

1-Z

-1

Analog:

1

Analog:

Z-1

DAC1

DAC2

DAC3

RDAC

Single-opamp third-order

6A. Pena-Perez, et al., JSSC 2012

Opamp sharing and error feedback

7

Φ1

C1i

C2

Vip

A

Φ1 Φ1

Φ2 Φ1 Φ2

DAC1

VOP

Φ1 Φ2

Φ1

Φ2

Φ2

C4iVOP Φ1 Φ1

DAC1

C3

C5Φ2 Φ2

First Integrator

Second Integrator

Feed-forward

Ф2a Ф2b

Ф2b Ф2a

Ф2a Ф2bФ2b Ф2cФ2c Ф2a

DAC3

Ф1a Ф1b

Ф1b Ф1a

Ф1a Ф1bФ1b Ф1a

Φ1 Φ1

Φ2 C3

DAC2

Φ2 -z-1

1

Ф2Ф1 Ф2Ф1Ф2

n n+1Ф1

n-1

Ф1a Ф1a

Ф1b

Ф2b

Ф2a

Ф2c

An

alo

g:

1-Z

-1

Analog:

1

Analog:

Z-1

DAC1

DAC2

DAC3

RDAC

Complex clock gen.

RDAC, extra power

Stability during non-overlapped time

8

Φ1

C1i

C2

Vip

A

Φ1 Φ1

Φ2 Φ1 Φ2

DAC1

VOP

Φ1 Φ2

Φ1

Φ2

Φ2

C4iVOP Φ1 Φ1

DAC1

C3

C5Φ2 Φ2

First Integrator

Second Integrator

Feed-forward

Ф2a Ф2b

Ф2b Ф2a

Ф2a Ф2bФ2b Ф2cФ2c Ф2a

DAC3

Ф1a Ф1b

Ф1b Ф1a

Ф1a Ф1bФ1b Ф1a

Φ1 Φ1

Φ2 C3

DAC2

Φ2 -z-1

1

Ф2Ф1 Ф2Ф1Ф2

n n+1Ф1

n-1

Ф1a Ф1a

Ф1b

Ф2b

Ф2a

Ф2c

An

alo

g:

1-Z

-1

Analog:

1

Analog:

Z-1

Non-overlapped

Φ1 Φ2

X X

X X

Unstable issue

3rd order, stability?

Opamp :Open-loop state

9

Outline

• Motivation

• Traditional implementation

• Proposed architecture

• Circuit and Measurement Results

• Conclusion

Architecture

10

Feed-forward architecture

5-bit FPNS SAR ADC, embedded with 1st order NS

A single opamp is shared to realize 2nd order NS

A Passive adder to realize FF addition

NTF(z)Q

X

-Y

DAC DWA

Shaped Quantization Noise

1st

integrator 2nd

integrator

1-z -1=

2z-10.8z

-1

1-z -1=

Qf

A single opamp

5-bit

FPNS SAR

:passive additionNTF(z)=1+0.5z

-11 - 0.5z

-1

-

1st order FPNS SAR ADC

11

Fully passive noise shaping (FPNS) SAR

Suppress non-ideal effects

1st order NS

ФS

N-1

ФNS1

N

ФNS2

ФNS3

X Фs

C1 C2

ФNS1

+

-

C-DAC

+

ФNS3

C3ФNS2

C1=C2=C3

Y

NTF(z)=1+0.5z

-11 - 0.5z

-1

Noise transfer function (NTF):

Z. Chen, et al., VLSIC 2015

NTF(z)Q

X

-Y

DAC

Shaped Quantization Noise

1st

integrator 2nd

integratorQ

f

A single opamp

5-bit

FPNS SAR

-

A single-opamp 2nd order NS

12

An opamp sharing technique:

Additional SC:

Solve stability issue

X

-

1st

integrator 2nd

integrator

A single opamp

-

Y

Φ1

C4

C5

X

A

Φ1 Φ1

Φ2 Φ1 Φ2

Φ1 Φ2

Y

VOP

Φ1 Φ2

Φ1

Φ2

Φ2

C7VOP Φ1 Φ1

Y

C6

C8Φ2 Φ2

First Integrator

Second Integrator

Feed-forward Additional SC

Non-overlapped

Φ1 Φ2 Φ1 Φ2

C4 & C5: 1st integrator

C7 & C8: 2nd integrator

C6: Feed-forward

A passive adder

13

A passive adder by capacitor:

Passive, save power

Differential signal:

Input: XP & XN;

Opamp output: VOP,P & VOP,N;

XN

VOP,P

=VOP,P-XN

XP

VOP,N

=VOP,N-XP

VOP,P+XP=VOP,P-XN VOP,N+XN=VOP,N-XP

X

VOP

XP + VOP,P

XN+ VOP,N

Z. Chen, et al., A-SSCC 2012

14

Outline

• Motivation

• Traditional implementation

• Proposed architecture

• Circuit and Measurement Results

• Conclusion

The schematic

15

Y(z)=X(z)+(1+0.5z

-1)(1+0.6z

-2)

(1 - 0.5z-1

)(1-z-1

)2No RDAC, save power

Only two non-overlapped clocks

No stability issue

FPi&Φ1

C4i

C5

Vip

A

Φ1 Φ1

Φ2 Φ1 Φ2

Φ1 Φ2

REFP REFN

FNi&Φ1

VOP

Φ1 Φ2

Φ1

Φ2

FPi&Φ2

C7iVOP Φ1 Φ1

REFP REFN

FNi&Φ2

C6

C8Φ2 Φ2

First Integrator

Second Integrator

Feed-forward Additional SC

Non-overlapped

Φ1 Φ2 Φ1 Φ2

ANALOG DIGITAL

+

-+

Φ2

5-bit FPNS SAR ADC Th

erm

om

ete

r

De

co

de

r

DW

A

FPi

FNi

i=1,2,…,30,31

REFP REFN

VOP,P

XN

REFP REFN

VOP,N

XP

Passive addition

The opamp

16

Current mirror opamp:

1

1

4

3

2

3

1

2 1

/

/

/

/

m out

m

L

BGain g R

g BGBW

C

W LB

W L

W L

W L

Single stage, save power

[J. Roh, et al., JSSC 2008]

AVDD

I0

VipVOP VON

CMFB

Vin

AVSS

M1 M1

M2M3 M3

M4 M4

M5 M5M9

M8

M7M6

VB

Chip photo

• CMOS 65 nm, core area: 0.097 mm2

17336.6 µm

28

7.9

µm

CL

KFPNS SAR ADC

Op

am

p

DW

A

1

6

2 5

43

6

5

4

1: 1st

sample cap

2: 2nd

sample cap

3: Feed-forward cap

4: 1st

int. cap

5: 2nd

int. cap

6: additional SC

1 2

3

The measured PSD

18

Peak SNDR: 74.9 dB; DR: 78 dB

103 104 105 106-140

-120

-100

-80

-60

-40

-20

0

PS

D (

dB

)

Frequency (Hz)

Power Spectral Density

BW = 100 kHz

60dB/Dec

SNDR = 74.94 dB ENOB = 12.16 bits

Fin = 9.95 kHz

OSR = 16 Fs = 3.2 MHz

-80 -60 -40 -20 0

0

10

20

30

40

50

60

70

DR=78 dB

Input signal @ 10kHz

-3 dBFS

Full scale = 1 V

SN

DR

(d

B)

Input amplitude (dBFS)

Analog power supply: 0.7 V; Digital power supply: 0.85 V

Performance Comparison

19[1] A. Pena-Perez, et al., JSSC 2012

[4] C. Briseno-Vidrios, et al., VLSIC 2015

[5] T. Kim, et al., VLSIC 2015

The fewer No. of opamp is, the lower power is.

20

Outline

• Motivation

• Traditional implementation

• Proposed architecture

• Circuit and Measurement Results

• Conclusion

Conclusion

• A single-opamp third-order SDM is introduced

– 74.9 dB SNDR, 3.2-MHz Fs, 50 fJ/Con.-step

FoMW, 168 dB FoMS

– An opamp is sharing to realize 2nd order noise

shaping

– Stability is improved

– Power efficiency is enhanced

21

Acknowledgement

22

This work was partially supported by MIC,

HUAWEI, Mentor Graphics for the use of the

Analog FastSPICE(AFS) Platform, and VDEC in

collaboration with Cadence Design Systems,

Inc, Synopsys, Inc.

23

Thank you

for your interest!

Zhijie Chen,

chen@ssc.pe.titech.ac.jp