The Capri Spring School on Transport in Nanostructures 2020 - … · CAPRI, 2014 CPT, Marseille...

Post on 01-Aug-2020

4 views 0 download

Transcript of The Capri Spring School on Transport in Nanostructures 2020 - … · CAPRI, 2014 CPT, Marseille...

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Interactions and charge fractionalization in anelectronic Hong-Ou-Mandel interferometer

C. Wahl, J. Rech, T. Jonckheere and T. Martin

CAPRI, 2014

CPT, Marseille

C. Wahl et al., PRL 112, 046802 (’14)

1 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Electronic Quantum Optics

Photons → Electrons

Light beam → Chiral edge QHE

Beam splitter → QPC

Coherent Light source →Single Electron Source

2 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Electronic Quantum Optics

Photons → Electrons

Light beam → Chiral edge QHE

Beam splitter → QPC

Coherent Light source →Single Electron Source

2 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Electronic Quantum Optics

Photons → Electrons

Light beam → Chiral edge QHE

Beam splitter → QPC

Coherent Light source →Single Electron Source

2 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Electronic Quantum Optics

Photons → Electrons

Light beam → Chiral edge QHE

Beam splitter → QPC

Coherent Light source →Single Electron Source

2 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Single Electron Sources

D

1D

bb

V(t)

VG

VG

Macmillan Publishers Limited. All rights reserved©2013

Energy| (t)|2

(t) ~1

t + iW

t

V(t)

V(t) = h

eπ t2 + W2

W

a

c

Macmillan Publishers Limited. All rights reserved©2013

Lorentzian voltage pulses

[Dubois et al., Nature (’13)] 17

Fig1Flying electrons on surface acoustic waves

[Hermelin et al., Nature 477, 435 (’11)][McNeil et al., Nature 477, 439 (’11)]

���

�������

���

�� ��

� �� ���

� ��

����

�Charge pumps, quantum turnstiles

[Giblin et al., Nature Comm. 3, 930 (’12)]

Mesoscopic capacitor

[Fève et al., Science 316, 1169 (’07)]

opens the way to all sorts of interference experiments!

3 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Single Electron Sources

D

1D

bb

V(t)

VG

VG

Macmillan Publishers Limited. All rights reserved©2013

Energy| (t)|2

(t) ~1

t + iW

t

V(t)

V(t) = h

eπ t2 + W2

W

a

c

Macmillan Publishers Limited. All rights reserved©2013

Lorentzian voltage pulses

[Dubois et al., Nature (’13)]

17

Fig1Flying electrons on surface acoustic waves

[Hermelin et al., Nature 477, 435 (’11)][McNeil et al., Nature 477, 439 (’11)]

���

�������

���

�� ��

� �� ���

� ��

����

�Charge pumps, quantum turnstiles

[Giblin et al., Nature Comm. 3, 930 (’12)]

Mesoscopic capacitor

[Fève et al., Science 316, 1169 (’07)]

opens the way to all sorts of interference experiments!

3 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Single Electron Sources

D

1D

bb

V(t)

VG

VG

Macmillan Publishers Limited. All rights reserved©2013

Energy| (t)|2

(t) ~1

t + iW

t

V(t)

V(t) = h

eπ t2 + W2

W

a

c

Macmillan Publishers Limited. All rights reserved©2013

Lorentzian voltage pulses

[Dubois et al., Nature (’13)] 17

Fig1Flying electrons on surface acoustic waves

[Hermelin et al., Nature 477, 435 (’11)][McNeil et al., Nature 477, 439 (’11)]

���

�������

���

�� ��

� �� ���

� ��

����

�Charge pumps, quantum turnstiles

[Giblin et al., Nature Comm. 3, 930 (’12)]

Mesoscopic capacitor

[Fève et al., Science 316, 1169 (’07)]

opens the way to all sorts of interference experiments!

3 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Single Electron Sources

D

1D

bb

V(t)

VG

VG

Macmillan Publishers Limited. All rights reserved©2013

Energy| (t)|2

(t) ~1

t + iW

t

V(t)

V(t) = h

eπ t2 + W2

W

a

c

Macmillan Publishers Limited. All rights reserved©2013

Lorentzian voltage pulses

[Dubois et al., Nature (’13)] 17

Fig1Flying electrons on surface acoustic waves

[Hermelin et al., Nature 477, 435 (’11)][McNeil et al., Nature 477, 439 (’11)]

���

�������

���

�� ��

� �� ���

� ��

����

�Charge pumps, quantum turnstiles

[Giblin et al., Nature Comm. 3, 930 (’12)]

Mesoscopic capacitor

[Fève et al., Science 316, 1169 (’07)]

opens the way to all sorts of interference experiments!

3 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Single Electron Sources

D

1D

bb

V(t)

VG

VG

Macmillan Publishers Limited. All rights reserved©2013

Energy| (t)|2

(t) ~1

t + iW

t

V(t)

V(t) = h

eπ t2 + W2

W

a

c

Macmillan Publishers Limited. All rights reserved©2013

Lorentzian voltage pulses

[Dubois et al., Nature (’13)] 17

Fig1Flying electrons on surface acoustic waves

[Hermelin et al., Nature 477, 435 (’11)][McNeil et al., Nature 477, 439 (’11)]

���

�������

���

�� ��

� �� ���

� ��

����

�Charge pumps, quantum turnstiles

[Giblin et al., Nature Comm. 3, 930 (’12)]

Mesoscopic capacitor

[Fève et al., Science 316, 1169 (’07)]

opens the way to all sorts of interference experiments!

3 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Single Electron Sources

D

1D

bb

V(t)

VG

VG

Macmillan Publishers Limited. All rights reserved©2013

Energy| (t)|2

(t) ~1

t + iW

t

V(t)

V(t) = h

eπ t2 + W2

W

a

c

Macmillan Publishers Limited. All rights reserved©2013

Lorentzian voltage pulses

[Dubois et al., Nature (’13)] 17

Fig1Flying electrons on surface acoustic waves

[Hermelin et al., Nature 477, 435 (’11)][McNeil et al., Nature 477, 439 (’11)]

���

�������

���

�� ��

� �� ���

� ��

����

�Charge pumps, quantum turnstiles

[Giblin et al., Nature Comm. 3, 930 (’12)]

Mesoscopic capacitor

[Fève et al., Science 316, 1169 (’07)]

opens the way to all sorts of interference experiments!

3 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆ Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t)

Ù 1 e + 1 h

Injected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆

Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t)

Ù 1 e + 1 h

Injected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆

Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t)

Ù 1 e + 1 h

Injected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆ Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t)

Ù 1 e + 1 h

Injected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆ Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t)

Ù 1 e + 1 hInjected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆ Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t)

Ù 1 e + 1 hInjected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆ Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t)

Ù 1 e + 1 hInjected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆ Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t)

Ù 1 e + 1 hInjected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆ Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t)

Ù 1 e + 1 hInjected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆ Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t)

Ù 1 e + 1 hInjected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆ Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t) Ù 1 e + 1 h

Injected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

The LPA mesoscopic capacitor

D∆ Quantum dot

Level spacing: ∆

Level width: D∆tuned by Vg

Time-dependent excitation voltage Vexc(t) Ù 1 e + 1 hInjected exponantial wave-packet

Vexc

Vexc(t)

t

,〈I (t)〉

[Fève et al., Science 316, 1169 (’07); Mahé et al., PRB 82,201309 (’10)]

4 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM interferometry

Electrons

anti-bunchingeffect of interactions ?

Photons

bunching

5 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM interferometry

Electrons

anti-bunchingeffect of interactions ?

Photons

bunching

5 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM interferometry

Electrons

anti-bunchingeffect of interactions ?

Photons

bunching

5 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM interferometry

Electrons

anti-bunching

effect of interactions ?

Photons

bunching

5 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM interferometry

Electrons

ν = 2

anti-bunching

effect of interactions ?

Photons

bunching

5 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM interferometry

Electrons

ν = 2

anti-bunchingeffect of interactions ?

Photons

bunching

5 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Table of Contents

1 Non-interacting picture

2 Charge fractionalization

3 Interferometry at ν = 2

6 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Table of Contents

1 Non-interacting picture

2 Charge fractionalization

3 Interferometry at ν = 2

7 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM experiment with photons

Interference experimentnon-linear crystal generatesphoton pairs

[Hong, Ou and Mandel, PRL 59, 2044 (’87)]

Coincidence rateHOM dip is observed at 0time delay

signatures of incoming wavepackets

8 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM experiment with photons

Interference experimentnon-linear crystal generatesphoton pairs

[Hong, Ou and Mandel, PRL 59, 2044 (’87)]

Coincidence rateHOM dip is observed at 0time delay

signatures of incoming wavepackets

8 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM with electrons

Setup2 single electron sources

counter-propagatingchannels coupled at QPC

I outR

I outL

Zero-frequency cross-correlations

SoutRL =

∫dtdt ′

[〈I out

R (x, t)I outL (x ′, t ′)〉 − 〈I out

R (x, t)〉〈I outL (x ′, t ′)〉

]

9 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM with electrons

Setup2 single electron sources

counter-propagatingchannels coupled at QPC

I outR

I outL

Zero-frequency cross-correlations

SoutRL =

∫dtdt ′

[〈I out

R (x, t)I outL (x ′, t ′)〉 − 〈I out

R (x, t)〉〈I outL (x ′, t ′)〉

]

9 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM with electrons

Setup2 single electron sources

counter-propagatingchannels coupled at QPC

Differences with photonsfermionic statistics: Fermisea, holes, ...

thermal effects

Coulomb interaction

Zero-frequency cross-correlations

SoutRL =

∫dtdt ′

[〈I out

R (x, t)I outL (x ′, t ′)〉 − 〈I out

R (x, t)〉〈I outL (x ′, t ′)〉

]

9 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Filling factor ν = 1[Jonckheere et al., Phys. Rev. B 86, 125425 (’12)]

−120 −100 −80 −60 −40 −20 0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

δT

SH

OM/2S

HB

T

D = 0.2D = 0.5D = 0.8

Collision of identical wave-packetsLarge δT2SHBT < 0 → Hanbury-Brown andTwiss

δT = 0SHOM(0) = 0 → Pauli dip

∆t

H L

-100 -50 0 50 100

0.0

0.2

0.4

0.6

0.8

1.0

∆t

SHOM H∆t L

2 SHBT

D1 = 0.2D2 = 0.5

D1 = 0.1D2 = 0.8

Different packets → asymmetry0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

∆t

SHOM H∆t L

2 SHBT

Ε

V=V+

EFΕ

V=V-

EF

ε = 0

ε = ∆/2

Electron-hole collision → peak

10 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Filling factor ν = 1[Jonckheere et al., Phys. Rev. B 86, 125425 (’12)]

−120 −100 −80 −60 −40 −20 0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

δT

SH

OM/2S

HB

T

D = 0.2D = 0.5D = 0.8

Collision of identical wave-packetsLarge δT2SHBT < 0 → Hanbury-Brown andTwiss

δT = 0SHOM(0) = 0 → Pauli dip

∆t

H L

-100 -50 0 50 100

0.0

0.2

0.4

0.6

0.8

1.0

∆t

SHOM H∆t L

2 SHBT

D1 = 0.2D2 = 0.5

D1 = 0.1D2 = 0.8

Different packets → asymmetry0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

∆t

SHOM H∆t L

2 SHBT

Ε

V=V+

EFΕ

V=V-

EF

ε = 0

ε = ∆/2

Electron-hole collision → peak

10 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Filling factor ν = 1[Jonckheere et al., Phys. Rev. B 86, 125425 (’12)]

−120 −100 −80 −60 −40 −20 0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

δT

SH

OM/2S

HB

T

D = 0.2D = 0.5D = 0.8

Collision of identical wave-packetsLarge δT2SHBT < 0 → Hanbury-Brown andTwiss

δT = 0SHOM(0) = 0 → Pauli dip

∆t

H L

-100 -50 0 50 100

0.0

0.2

0.4

0.6

0.8

1.0

∆t

SHOM H∆t L

2 SHBT

D1 = 0.2D2 = 0.5

D1 = 0.1D2 = 0.8

Different packets → asymmetry

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

∆t

SHOM H∆t L

2 SHBT

Ε

V=V+

EFΕ

V=V-

EF

ε = 0

ε = ∆/2

Electron-hole collision → peak

10 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Filling factor ν = 1[Jonckheere et al., Phys. Rev. B 86, 125425 (’12)]

−120 −100 −80 −60 −40 −20 0 20 40 60 80 100 1200

0.2

0.4

0.6

0.8

1

δT

SH

OM/2S

HB

T

D = 0.2D = 0.5D = 0.8

Collision of identical wave-packetsLarge δT2SHBT < 0 → Hanbury-Brown andTwiss

δT = 0SHOM(0) = 0 → Pauli dip

∆t

H L

-100 -50 0 50 100

0.0

0.2

0.4

0.6

0.8

1.0

∆t

SHOM H∆t L

2 SHBT

D1 = 0.2D2 = 0.5

D1 = 0.1D2 = 0.8

Different packets → asymmetry0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

∆t

SHOM H∆t L

2 SHBT

Ε

V=V+

EFΕ

V=V-

EF

ε = 0

ε = ∆/2

Electron-hole collision → peak

10 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM with electrons: experimental results

Experimental setup[Bocquillon et al., Science 339, 1054 (’13)]

✬ ✩�����

���

��� ����

����

�� ��������������

�����������������

�����

���

�����

��

��

��

!"#$%&'(

)&*+!,-./&$!"#$%&'0

Results12

Time delay ⌧ [ps]

Correlations�q

���

���

���

���

���

���

���

���

���

���

���

���

���� ���� � ��� ���

Random  par**oning

Pauli  dip

FIG. 3: Excess noise ∆q between both sources switched on and both sources switched off as a function

of the delay τ . The noise values are normalized by the value on the plateau observed for long delays. The

blurry blue line represents the sum of the partition noise of both sources. The blue trace is an exponential

fit by ∆q = 1− γe−|t−τ0|/τe . The red trace is obtained using Floquet scattering theory.

Pauli dipSHOM(0) 6= 0

Decoherence at ν = 2!!

11 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM with electrons: experimental results

Experimental setup[Bocquillon et al., Science 339, 1054 (’13)]

✬ ✩�����

���

��� ����

����

�� ��������������

�����������������

�����

���

�����

��

��

��

!"#$%&'(

)&*+!,-./&$!"#$%&'0

Results12

Time delay ⌧ [ps]

Correlation

s�q

���

���

���

���

���

���

���

���

���

���

���

���

���� ���� � ��� ���

Random  par**oning

Pauli  dip

FIG. 3: Excess noise ∆q between both sources switched on and both sources switched off as a function

of the delay τ . The noise values are normalized by the value on the plateau observed for long delays. The

blurry blue line represents the sum of the partition noise of both sources. The blue trace is an exponential

fit by ∆q = 1− γe−|t−τ0|/τe . The red trace is obtained using Floquet scattering theory.

Pauli dipSHOM(0) 6= 0

Decoherence at ν = 2!!

11 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM with electrons: experimental results

Experimental setup[Bocquillon et al., Science 339, 1054 (’13)]

✬ ✩�����

���

��� ����

����

�� ��������������

�����������������

�����

���

�����

��

��

��

!"#$%&'(

)&*+!,-./&$!"#$%&'0

Results12

Time delay ⌧ [ps]

Correlation

s�q

���

���

���

���

���

���

���

���

���

���

���

���

���� ���� � ��� ���

Random  par**oning

Pauli  dip

FIG. 3: Excess noise ∆q between both sources switched on and both sources switched off as a function

of the delay τ . The noise values are normalized by the value on the plateau observed for long delays. The

blurry blue line represents the sum of the partition noise of both sources. The blue trace is an exponential

fit by ∆q = 1− γe−|t−τ0|/τe . The red trace is obtained using Floquet scattering theory.

Pauli dipSHOM(0) 6= 0

Decoherence at ν = 2!!

11 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Beyond ν = 1: interactions!

between counter-propagatingchannels, near the QPC

strong interactions within achannel: Fractional QHE

between co-propagating channelsat filling ν = 2

interactin

g region

(work in progress)

(this talk)

injection

propagation

tunneling

ν = 2

prepared state |φ〉

bosonized H(+ diagonalization)

scattering matrix

Bosonization Keldysh

12 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Beyond ν = 1: interactions!

between counter-propagatingchannels, near the QPC

strong interactions within achannel: Fractional QHE

between co-propagating channelsat filling ν = 2

(to be published)

(this talk)

injection

propagation

tunneling

ν = 2

prepared state |φ〉

bosonized H(+ diagonalization)

scattering matrix

Bosonization Keldysh

12 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Beyond ν = 1: interactions!between counter-propagatingchannels, near the QPC

strong interactions within achannel: Fractional QHE

between co-propagating channelsat filling ν = 2

(this talk)

→ known to be present in the experimental setup!

injection

propagation

tunneling

ν = 2

prepared state |φ〉

bosonized H(+ diagonalization)

scattering matrix

Bosonization Keldysh

12 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Beyond ν = 1: interactions!

between counter-propagatingchannels, near the QPC

strong interactions within achannel: Fractional QHE

between co-propagating channelsat filling ν = 2

(this talk)

injection

propagation

tunneling

ν = 2

prepared state |φ〉

bosonized H(+ diagonalization)

scattering matrix

Bosonization Keldysh

12 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Beyond ν = 1: interactions!

between counter-propagatingchannels, near the QPC

strong interactions within achannel: Fractional QHE

between co-propagating channelsat filling ν = 2

(this talk)

injection

propagation

tunneling

ν = 2

prepared state |φ〉

bosonized H(+ diagonalization)

scattering matrix

Bosonization Keldysh

12 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Beyond ν = 1: interactions!

between counter-propagatingchannels, near the QPC

strong interactions within achannel: Fractional QHE

between co-propagating channelsat filling ν = 2

(this talk)

injection

propagation

tunneling

ν = 2

prepared state |φ〉

bosonized H(+ diagonalization)

scattering matrix

Bosonization Keldysh

12 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Table of Contents

1 Non-interacting picture

2 Charge fractionalization

3 Interferometry at ν = 2

13 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Injecting a single electron

|φR〉 =∫

dxϕR(x)ψ†1,R(x − L, 0)|0〉

∫dxϕ(x)ψ†(x)

prepared state |φR〉

Exponential packetϕR(x) =

√2Γeiε0xeΓxθ(−x)

wide in energy spaceγ = ε0/Γ = 1ε0 = 175mK

energy-resolvedγ = 8ε0 = 0.7K

14 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Injecting a single electron

|φR〉 =∫

dxϕR(x)ψ†1,R(x − L, 0)|0〉

∫dxϕ(x)ψ†(x)

prepared state |φR〉

Exponential packetϕR(x) =

√2Γeiε0xeΓxθ(−x)

wide in energy spaceγ = ε0/Γ = 1ε0 = 175mK

energy-resolvedγ = 8ε0 = 0.7K

14 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Injecting a single electron

|φR〉 =∫

dxϕR(x)ψ†1,R(x − L, 0)|0〉

∫dxϕ(x)ψ†(x)

prepared state |φR〉

Exponential packetϕR(x) =

√2Γeiε0xeΓxθ(−x)

wide in energy spaceγ = ε0/Γ = 1ε0 = 175mK

energy-resolvedγ = 8ε0 = 0.7K

14 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Injecting a single electron

|φR〉 =∫

dxϕR(x)ψ†1,R(x − L, 0)|0〉

Exponential packetϕR(x) =

√2Γeiε0xeΓxθ(−x)

wide in energy spaceγ = ε0/Γ = 1ε0 = 175mK

energy-resolvedγ = 8ε0 = 0.7K

14 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Injecting a single electron

|φR〉 =∫

dxϕR(x)ψ†1,R(x − L, 0)|0〉

−1 −0.5 0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

1.2

1.4

ε0 = 0.175K

ε(K)

|ϕ̂L

(ε)|2

−1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

x(µm)

|ϕL

(x)|2

Exponential packetϕR(x) =

√2Γeiε0xeΓxθ(−x)

wide in energy spaceγ = ε0/Γ = 1ε0 = 175mK

energy-resolvedγ = 8ε0 = 0.7K

14 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Injecting a single electron

|φR〉 =∫

dxϕR(x)ψ†1,R(x − L, 0)|0〉

−1 −0.5 0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

1.2

1.4

ε0 = 0.7K

ε(K)

|ϕ̂L

(ε)|2

−1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

x(µm)

|ϕL

(x)|2

Exponential packetϕR(x) =

√2Γeiε0xeΓxθ(−x)

wide in energy spaceγ = ε0/Γ = 1ε0 = 175mK

energy-resolvedγ = 8ε0 = 0.7K

14 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Bosonization frameworkFinite temperature: Θ = 0.1K

one outer and one inner (j = 1, 2) channels per edge (r = R,L):

r = R

r = L

j = 1

j = 2

j = 2

j = 1

Bosonization identity:

ψj,r(x, t) = Ur√2πa

eiφj,r (x,t)

Ur : Klein factora: short-distance cutoffφj,r : chiral bosonic field

J. von Delft and H. Schoeller, Annalen Phys., 1998

15 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Bosonization frameworkFinite temperature: Θ = 0.1Kone outer and one inner (j = 1, 2) channels per edge (r = R,L):

r = R

r = L

j = 1

j = 2

j = 2

j = 1

Bosonization identity:

ψj,r(x, t) = Ur√2πa

eiφj,r (x,t)

Ur : Klein factora: short-distance cutoffφj,r : chiral bosonic field

J. von Delft and H. Schoeller, Annalen Phys., 1998

15 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Bosonization frameworkFinite temperature: Θ = 0.1Kone outer and one inner (j = 1, 2) channels per edge (r = R,L):

r = R

r = L

j = 1

j = 2

j = 2

j = 1

Bosonization identity:

ψj,r(x, t) = Ur√2πa

eiφj,r (x,t)

Ur : Klein factora: short-distance cutoffφj,r : chiral bosonic field

J. von Delft and H. Schoeller, Annalen Phys., 1998

15 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Bosonization frameworkFinite temperature: Θ = 0.1Kone outer and one inner (j = 1, 2) channels per edge (r = R,L):

r = R

r = L

j = 1

j = 2

j = 2

j = 1

Bosonization identity:

ψj,r(x, t) = Ur√2πa

eiφj,r (x,t)Ur : Klein factor

a: short-distance cutoffφj,r : chiral bosonic field

J. von Delft and H. Schoeller, Annalen Phys., 1998

15 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Bosonization frameworkFinite temperature: Θ = 0.1Kone outer and one inner (j = 1, 2) channels per edge (r = R,L):

r = R

r = L

j = 1

j = 2

j = 2

j = 1

Bosonization identity:

ψj,r(x, t) = Ur√2πa

eiφj,r (x,t)Ur : Klein factora: short-distance cutoff

φj,r : chiral bosonic field

J. von Delft and H. Schoeller, Annalen Phys., 1998

15 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Bosonization frameworkFinite temperature: Θ = 0.1Kone outer and one inner (j = 1, 2) channels per edge (r = R,L):

r = R

r = L

j = 1

j = 2

j = 2

j = 1

Bosonization identity:

ψj,r(x, t) = Ur√2πa

eiφj,r (x,t)Ur : Klein factora: short-distance cutoffφj,r : chiral bosonic field

J. von Delft and H. Schoeller, Annalen Phys., 1998

15 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Hamiltonian

Propagation along the edges:

Hkin = ~π

∑r=R,L

∫dx v1 (∂xφ1,r)2 + v2 (∂xφ2,r)2

Intra-channel interaction:

Hintra = ~π

U∑

r=R,L

∑j=1,2

∫dx(∂xφj,r)2

Inter-channel interaction:

Hinter = 2~π

u∑

r=R,L

∫dx(∂xφ1,r)(∂xφ2,r)

parameters0 ≤ u ≤ UU & vF

16 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Hamiltonian

Propagation along the edges:

Hkin = ~π

∑r=R,L

∫dx v1 (∂xφ1,r)2 + v2 (∂xφ2,r)2

Intra-channel interaction:

Hintra = ~π

U∑

r=R,L

∑j=1,2

∫dx(∂xφj,r)2

Inter-channel interaction:

Hinter = 2~π

u∑

r=R,L

∫dx(∂xφ1,r)(∂xφ2,r)

parameters0 ≤ u ≤ UU & vF

16 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Hamiltonian

Propagation along the edges:

Hkin = ~π

∑r=R,L

∫dx v1 (∂xφ1,r)2 + v2 (∂xφ2,r)2

Intra-channel interaction:

Hintra = ~π

U∑

r=R,L

∑j=1,2

∫dx(∂xφj,r)2

Inter-channel interaction:

Hinter = 2~π

u∑

r=R,L

∫dx(∂xφ1,r)(∂xφ2,r)

parameters0 ≤ u ≤ UU & vF

16 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Hamiltonian

Propagation along the edges:

Hkin = ~π

∑r=R,L

∫dx v1 (∂xφ1,r)2 + v2 (∂xφ2,r)2

Intra-channel interaction:

Hintra = ~π

U∑

r=R,L

∑j=1,2

∫dx(∂xφj,r)2

Inter-channel interaction:

Hinter = 2~π

u∑

r=R,L

∫dx(∂xφ1,r)(∂xφ2,r)

parameters0 ≤ u ≤ UU & vF

16 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Mixing angle θ

H = ~π

∑r=R,L

∑j

(vj + U )(∂xφj,r)2 + 2u(∂xφ1,r)(∂xφ2,r)

Diagonalization Ù Mixing angle θ: tan(2θ) = 2u/(v1 − v2)Eigenmodes φ+,r and φ−,r

Eigenvelocities v±

No coupling: θ = 0φ+,r = φ1,rφ−,r = φ2,rv+ = v1 + Uv− = v2 + U

Strong coupling: θ = π/4φ+,r =

√2/2(φ1,r + φ2,r)

φ−,r =√2/2(φ1,r − φ2,r)

v1 = v2 = vFv± = vF + U ± u

17 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Mixing angle θ

H = ~π

∑r=R,L

∑j

(vj + U )(∂xφj,r)2 + 2u(∂xφ1,r)(∂xφ2,r)

Diagonalization Ù Mixing angle θ: tan(2θ) = 2u/(v1 − v2)

Eigenmodes φ+,r and φ−,r

Eigenvelocities v±

No coupling: θ = 0φ+,r = φ1,rφ−,r = φ2,rv+ = v1 + Uv− = v2 + U

Strong coupling: θ = π/4φ+,r =

√2/2(φ1,r + φ2,r)

φ−,r =√2/2(φ1,r − φ2,r)

v1 = v2 = vFv± = vF + U ± u

17 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Mixing angle θ

H = ~π

∑r=R,L

∑j

(vj + U )(∂xφj,r)2 + 2u(∂xφ1,r)(∂xφ2,r)

Diagonalization Ù Mixing angle θ: tan(2θ) = 2u/(v1 − v2)Eigenmodes φ+,r and φ−,r

Eigenvelocities v±

φ+,r = sin θφ1,r + cos θφ2,r

φ−,r = cos θφ1,r − sin θφ2,r

No coupling: θ = 0φ+,r = φ1,rφ−,r = φ2,rv+ = v1 + Uv− = v2 + U

Strong coupling: θ = π/4φ+,r =

√2/2(φ1,r + φ2,r)

φ−,r =√2/2(φ1,r − φ2,r)

v1 = v2 = vFv± = vF + U ± u

17 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Mixing angle θ

H = ~π

∑r=R,L

∑j

(vj + U )(∂xφj,r)2 + 2u(∂xφ1,r)(∂xφ2,r)

Diagonalization Ù Mixing angle θ: tan(2θ) = 2u/(v1 − v2)Eigenmodes φ+,r and φ−,r

Eigenvelocities v±

v± = v1 + v2 + 2U2 ±

√(v1 − v2)2

4 + u2

No coupling: θ = 0φ+,r = φ1,rφ−,r = φ2,rv+ = v1 + Uv− = v2 + U

Strong coupling: θ = π/4φ+,r =

√2/2(φ1,r + φ2,r)

φ−,r =√2/2(φ1,r − φ2,r)

v1 = v2 = vFv± = vF + U ± u

17 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Mixing angle θ

H = ~π

∑r=R,L

[v+(∂xφ+,r)2 + v−(∂xφ−,r)2

]

Diagonalization Ù Mixing angle θ: tan(2θ) = 2u/(v1 − v2)Eigenmodes φ+,r and φ−,r

Eigenvelocities v±

No coupling: θ = 0φ+,r = φ1,rφ−,r = φ2,rv+ = v1 + Uv− = v2 + U

Strong coupling: θ = π/4φ+,r =

√2/2(φ1,r + φ2,r)

φ−,r =√2/2(φ1,r − φ2,r)

v1 = v2 = vFv± = vF + U ± u

17 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Mixing angle θ

H = ~π

∑r=R,L

[v+(∂xφ+,r)2 + v−(∂xφ−,r)2

]

Diagonalization Ù Mixing angle θ: tan(2θ) = 2u/(v1 − v2)Eigenmodes φ+,r and φ−,r

Eigenvelocities v±

No coupling: θ = 0φ+,r = φ1,rφ−,r = φ2,rv+ = v1 + Uv− = v2 + U

Strong coupling: θ = π/4φ+,r =

√2/2(φ1,r + φ2,r)

φ−,r =√2/2(φ1,r − φ2,r)

v1 = v2 = vFv± = vF + U ± u

17 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Mixing angle θ

H = ~π

∑r=R,L

[v+(∂xφ+,r)2 + v−(∂xφ−,r)2

]

Diagonalization Ù Mixing angle θ: tan(2θ) = 2u/(v1 − v2)Eigenmodes φ+,r and φ−,r

Eigenvelocities v±

No coupling: θ = 0φ+,r = φ1,rφ−,r = φ2,rv+ = v1 + Uv− = v2 + U

Strong coupling: θ = π/4φ+,r =

√2/2(φ1,r + φ2,r)

φ−,r =√2/2(φ1,r − φ2,r)

v1 = v2 = vFv± = vF + U ± u

17 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Charge fractionalization

qs,L(x, t) = e/π〈∂xφs,L(x, t)〉φL

Outer injection

q2,L

10 15 20−0.200.2q1,L

x(µm)

fast charged mode: ⊕ ⊕slow neutral mode: ⊕

E. Berg et al., PRL 102 (2009) P. Degiovanni et al., PRB 81 (2010)

18 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Charge fractionalization

qs,L(x, t) = e/π〈∂xφs,L(x, t)〉φL

Outer injection

q2,L

10 15 20−0.200.2q1,L

x(µm)

fast charged mode: ⊕ ⊕slow neutral mode: ⊕

E. Berg et al., PRL 102 (2009) P. Degiovanni et al., PRB 81 (2010)

18 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Charge fractionalization

qs,L(x, t) = e/π〈∂xφs,L(x, t)〉φL

Outer injection

+ −q2,L

10 15 20−0.200.2

+ + q1,L

x(µm)

fast charged mode: ⊕ ⊕slow neutral mode: ⊕

E. Berg et al., PRL 102 (2009) P. Degiovanni et al., PRB 81 (2010)

18 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Charge fractionalization

qs,L(x, t) = e/π〈∂xφs,L(x, t)〉φL

Outer injection

+ −q2,L

10 15 20−0.200.2

+ + q1,L

x(µm)

fast charged mode: ⊕ ⊕

slow neutral mode: ⊕

E. Berg et al., PRL 102 (2009) P. Degiovanni et al., PRB 81 (2010)

18 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Charge fractionalization

qs,L(x, t) = e/π〈∂xφs,L(x, t)〉φL

Outer injection

+ −q2,L

10 15 20−0.200.2

+ + q1,L

x(µm)

fast charged mode: ⊕ ⊕slow neutral mode: ⊕

E. Berg et al., PRL 102 (2009) P. Degiovanni et al., PRB 81 (2010)

18 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Table of Contents

1 Non-interacting picture

2 Charge fractionalization

3 Interferometry at ν = 2

19 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HBT setup

setup 1

coupling at QPC: channels 1

setup 2

channels 2

S =∫

dtdt ′〈Is(t)Is(t ′)〉 − 〈Is(t)〉〈Is(t ′)〉averages performed on |φL〉

⊗ |φR〉

H. Lee and L. Levitov, arXiv:cond-mat/9312013 (1993)

G. Burkard and D. Loss, PRL 91 (2003)Ol’khovskaya et al., PRL 101 (2008)

20 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HBT setup

setup 1

I1

I2 + −q2,L

10 15 20−0.200.2

+ + q1,L

x(µm)

coupling at QPC: channels 1

setup 2

channels 2

S =∫

dtdt ′〈Is(t)Is(t ′)〉 − 〈Is(t)〉〈Is(t ′)〉averages performed on |φL〉

⊗ |φR〉

H. Lee and L. Levitov, arXiv:cond-mat/9312013 (1993)

G. Burkard and D. Loss, PRL 91 (2003)Ol’khovskaya et al., PRL 101 (2008)

20 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HBT setup

setup 1

I1

I2 + −q2,L

10 15 20−0.200.2

+ + q1,L

x(µm)

coupling at QPC: channels 1

setup 2

I1

I2 + −q2,L

10 15 20−0.200.2

+ + q1,L

x(µm)

channels 2

S =∫

dtdt ′〈Is(t)Is(t ′)〉 − 〈Is(t)〉〈Is(t ′)〉averages performed on |φL〉

⊗ |φR〉

H. Lee and L. Levitov, arXiv:cond-mat/9312013 (1993)

G. Burkard and D. Loss, PRL 91 (2003)Ol’khovskaya et al., PRL 101 (2008)

20 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HBT setup

setup 1

I1

I2 + −q2,L

10 15 20−0.200.2

+ + q1,L

x(µm)

coupling at QPC: channels 1

setup 2

I1

I2 + −q2,L

10 15 20−0.200.2

+ + q1,L

x(µm)

channels 2

SHBT =∫

dtdt ′〈Is(t)Is(t ′)〉 − 〈Is(t)〉〈Is(t ′)〉averages performed on |φL〉

⊗ |φR〉

H. Lee and L. Levitov, arXiv:cond-mat/9312013 (1993)

G. Burkard and D. Loss, PRL 91 (2003)Ol’khovskaya et al., PRL 101 (2008)

20 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM setup

setup 1

I1

I2 + −q2,L

10 15 20−0.200.2

+ + q1,L

x(µm)

coupling at QPC: channels 1

setup 2

I1

I2 + −q2,L

10 15 20−0.200.2

+ + q1,L

x(µm)

channels 2

SHOM =∫

dtdt ′〈Is(t)Is(t ′)〉 − 〈Is(t)〉〈Is(t ′)〉averages performed on |φL〉 ⊗ |φR〉G. Burkard and D. Loss, PRL 91 (2003)Ol’khovskaya et al., PRL 101 (2008)

20 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Performing the calculation

Quantity of interestSHBT and SHOM

Operators involvedIs,r(x, t)

I outs,r (x, t)

I outs,r (0, t)

ψs,rout

(0, t)

ψs,rin

(0, t)

φins,r(0, t)

φin±,r(0, t)

Linear dispersion

Electric current

Scattering matrix

Bosonization

Diagonalization

ψs,rin

(0, t) = Ur√2πa expiφin

s,r (0,t)

21 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Performing the calculation

Quantity of interestSHBT and SHOM

Operators involvedIs,r(x, t)

I outs,r (x, t)

I outs,r (0, t)

ψs,rout

(0, t)

ψs,rin

(0, t)

φins,r(0, t)

φin±,r(0, t)

Linear dispersion

Electric current

Scattering matrix

Bosonization

Diagonalization

∫dt I out

s,r (x, t) =∫

dt I outs,r (0, t)

ψs,rin

(0, t) = Ur√2πa expiφin

s,r (0,t)

21 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Performing the calculation

Quantity of interestSHBT and SHOM

Operators involvedIs,r(x, t)

I outs,r (x, t)

I outs,r (0, t)

ψs,rout

(0, t)

ψs,rin

(0, t)

φins,r(0, t)

φin±,r(0, t)

Linear dispersion

Electric current

Scattering matrix

Bosonization

Diagonalization

I outs,r (0, t) = −ev : ψ†s,r

out(0, t)ψs,r

out(0, t) :

ψs,rin

(0, t) = Ur√2πa expiφin

s,r (0,t)

21 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Performing the calculation

Quantity of interestSHBT and SHOM

Operators involvedIs,r(x, t)

I outs,r (x, t)

I outs,r (0, t)

ψs,rout

(0, t)

ψs,rin

(0, t)

φins,r(0, t)

φin±,r(0, t)

Linear dispersion

Electric current

Scattering matrix

Bosonization

Diagonalization

(ψs,R(0, t)ψs,L(0, t)

)out

=(√T i

√R

i√R√T

)(ψs,R(0, t)ψs,L(0, t)

)in

ψs,rin

(0, t) = Ur√2πa expiφin

s,r (0,t)

21 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Performing the calculation

Quantity of interestSHBT and SHOM

Operators involvedIs,r(x, t)

I outs,r (x, t)

I outs,r (0, t)

ψs,rout

(0, t)

ψs,rin

(0, t)

φins,r(0, t)

φin±,r(0, t)

Linear dispersion

Electric current

Scattering matrix

Bosonization

Diagonalization

ψs,rin

(0, t) = Ur√2πa expiφin

s,r (0,t)

21 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Performing the calculation

Quantity of interestSHBT and SHOM

Operators involvedIs,r(x, t)

I outs,r (x, t)

I outs,r (0, t)

ψs,rout

(0, t)

ψs,rin

(0, t)

φins,r(0, t)

φin±,r(0, t)

Linear dispersion

Electric current

Scattering matrix

Bosonization

Diagonalization

ψs,rin

(0, t) = Ur√2πa expiφin

s,r (0,t)

21 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Performing the calculation

Quantity of interestSHBT and SHOM

Operators involvedIs,r(x, t) → φin

±,r(0, t)

I outs,r (x, t)

I outs,r (0, t)

ψs,rout

(0, t)

ψs,rin

(0, t)

φins,r(0, t)

φin±,r(0, t)

Linear dispersion

Electric current

Scattering matrix

Bosonization

Diagonalization

ψs,rin

(0, t) = Ur√2πa expiφin

s,r (0,t)

21 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HBT Result

SHBT = − 2e2RT(2πa)3N Re

{∫dyLdzL ϕL(yL)ϕ∗L(zL)g(0, zL − yL)∫

dt dτ Re[g(τ, 0)2

] [ hs(t; yL + L, zL + L)hs(t + τ ; yL + L, zL + L) − 1

]}(1)

g(t, x) =

sinh(i πaβv+

)sinh

(ia+v+t−xβv+/π

) sinh(i πaβv−

)sinh

(ia+v−t−xβv−/π

)1/2

hs(t; x, y) =

sinh(

ia−v+t+xβv+/π

)sinh

(ia+v+t−yβv+/π

)

12sinh

(ia−v−t+xβv−/π

)sinh

(ia+v−t−yβv−/π

)

32−s

22 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HBT Result

SHBT = − 2e2RT(2πa)3N Re

{∫dyLdzL ϕL(yL)ϕ∗L(zL)g(0, zL − yL)∫

dt dτ Re[g(τ, 0)2

] [ hs(t; yL + L, zL + L)hs(t + τ ; yL + L, zL + L) − 1

]}(1)

N = 〈φL|φL〉

g(t, x) =

sinh(i πaβv+

)sinh

(ia+v+t−xβv+/π

) sinh(i πaβv−

)sinh

(ia+v−t−xβv−/π

)1/2

hs(t; x, y) =

sinh(

ia−v+t+xβv+/π

)sinh

(ia+v+t−yβv+/π

)

12sinh

(ia−v−t+xβv−/π

)sinh

(ia+v−t−yβv−/π

)

32−s

22 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HBT Result

SHBT = − 2e2RT(2πa)3N Re

{∫dyLdzL ϕL(yL)ϕ∗L(zL)g(0, zL − yL)∫

dt dτ Re[g(τ, 0)2

] [ hs(t; yL + L, zL + L)hs(t + τ ; yL + L, zL + L) − 1

]}(1)

g(t, x) =

sinh(i πaβv+

)sinh

(ia+v+t−xβv+/π

) sinh(i πaβv−

)sinh

(ia+v−t−xβv−/π

)1/2

hs(t; x, y) =

sinh(

ia−v+t+xβv+/π

)sinh

(ia+v+t−yβv+/π

)

12sinh

(ia−v−t+xβv−/π

)sinh

(ia+v−t−yβv−/π

)

32−s

22 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM Result

SHOM(δT ) = − 2e2RT(2πa)4N Re

{∫dyLdzL ϕL(yL)ϕ∗L(zL)g(0, zL − yL)

×∫

dyRdzR ϕR(yR)ϕ∗R(zR)g(0, yR − zR)∫

dτ Re[g(τ, 0)2

]×∫

dt[ hs(t; yL + L, zL + L)

hs(t + τ ; yL + L, zL + L)hs(t + τ − δT ; L − yR,L − zR)

hs(t − δT ; L − yR,L − zR) − 1]}

(2)

23 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM Result

SHOM(δT ) = − 2e2RT(2πa)4N Re

{∫dyLdzL ϕL(yL)ϕ∗L(zL)g(0, zL − yL)

×∫

dyRdzR ϕR(yR)ϕ∗R(zR)g(0, yR − zR)∫

dτ Re[g(τ, 0)2

]×∫

dt[ hs(t; yL + L, zL + L)

hs(t + τ ; yL + L, zL + L)hs(t + τ − δT ; L − yR,L − zR)

hs(t − δT ; L − yR,L − zR) − 1]}

(2)

N = 〈φL|φL〉〈φR|φR〉

23 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

HOM Result

SHOM(δT ) = − 2e2RT(2πa)4N Re

{∫dyLdzL ϕL(yL)ϕ∗L(zL)g(0, zL − yL)

×∫

dyRdzR ϕR(yR)ϕ∗R(zR)g(0, yR − zR)∫

dτ Re[g(τ, 0)2

]×∫

dt[ hs(t; yL + L, zL + L)

hs(t + τ ; yL + L, zL + L)hs(t + τ − δT ; L − yR,L − zR)

hs(t − δT ; L − yR,L − zR) − 1]}

(2)

Numerics: quasi Monte Carlo algorithm

T. Hahn, Comput. Phys. Commun., 2005

23 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Interferometry

Setup 1 Setup 2

δT = 0Pauli dip Pauli dip

δT = +2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

δT = −2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

24 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Interferometry

Setup 1 Setup 2

δT = 0

Pauli dip Pauli dip

δT = +2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

δT = −2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

24 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Interferometry

Setup 1 Setup 2

δT = 0Pauli dip

Pauli dip

δT = +2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

δT = −2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

24 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Interferometry

Setup 1 Setup 2

δT = 0Pauli dip Pauli dip

δT = +2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

δT = −2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

24 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Interferometry

Setup 1 Setup 2

δT = 0Pauli dip Pauli dip

δT = +2Lu/(1− u2)

SHBT + asymmetric dip SHBT + asymmetric peak

δT = −2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

24 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Interferometry

Setup 1 Setup 2

δT = 0Pauli dip Pauli dip

δT = +2Lu/(1− u2)SHBT + asymmetric dip

SHBT + asymmetric peak

δT = −2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

24 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Interferometry

Setup 1 Setup 2

δT = 0Pauli dip Pauli dip

δT = +2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

δT = −2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

24 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Interferometry

Setup 1 Setup 2

δT = 0Pauli dip Pauli dip

δT = +2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

δT = −2Lu/(1− u2)SHBT + asymmetric dip SHBT + asymmetric peak

24 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Wide Packets: Setup 1

Wide packets in energyε0 = 175mK γ = 1

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

12|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

L = 5µmL = 2.5µm

setup 1

SHOM(0) 6= 0

velocity mismatch:asymmetry +loss of contrast

25 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Wide Packets: Setup 1

Wide packets in energyε0 = 175mK γ = 1

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

12|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

L = 5µmL = 2.5µm

setup 1

SHOM(0) 6= 0

velocity mismatch:asymmetry +loss of contrast

25 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Wide Packets: Setup 1

Wide packets in energyε0 = 175mK γ = 1

∆t

H L

-100 -50 0 50 100

0.0

0.2

0.4

0.6

0.8

1.0

∆t

SHOM H∆t L

2 SHBT

SHOM(0) 6= 0

velocity mismatch:asymmetry +loss of contrast

25 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Wide Packets: Setup 1

Wide packets in energyε0 = 175mK γ = 1

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

12|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

L = 5µmL = 2.5µm

setup 1

SHOM(0) 6= 0

velocity mismatch:asymmetry +loss of contrast

25 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Wide Packets: Setup 2

Wide packets in energyε0 = 175mK γ = 1

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

12|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

L = 5µmL = 2.5µm

setup 2

SHOM(0) 6= 0unchanged

side peaks:constructiveinterference

26 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Wide Packets: Setup 2

Wide packets in energyε0 = 175mK γ = 1

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

12|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

L = 5µmL = 2.5µm

setup 2

SHOM(0) 6= 0unchanged

side peaks:constructiveinterference

26 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Wide Packets: Setup 2

Wide packets in energyε0 = 175mK γ = 1

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

12|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

L = 5µmL = 2.5µm

setup 2

SHOM(0) 6= 0unchanged

side peaks:constructiveinterference

26 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Thin packets: Setups 1 and 2

Energy resolved packetsε0 = 0.7K γ = 8

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.5

1

1.52|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

L = 5µmL = 2.5µm

setup 1

dramatic loss ofcontrast!!agreement withexperiment

no peaks

27 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Thin packets: Setups 1 and 2

Energy resolved packetsε0 = 0.7K γ = 8

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.5

1

1.52|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

L = 5µmL = 2.5µm

setup 1

dramatic loss ofcontrast!!agreement withexperiment

no peaks

27 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Thin packets: Setups 1 and 2

Energy resolved packetsε0 = 0.7K γ = 8

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.5

1

1.52|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

L = 5µmL = 2.5µm

setup 2

dramatic loss ofcontrast!!agreement withexperiment

no peaks

27 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Electron-hole collision

Wide packets in energyε0 = ±175mK γ = 1

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

1

2|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

ε0 = 175mKγ = 1

L = 5µme-h setup1

⊕/→ constructive

⊕/⊕ or /→ destructive

⊕/ interferenceweaker

28 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Electron-hole collision

Wide packets in energyε0 = ±175mK γ = 1

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

1

2|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

ε0 = 175mKγ = 1

L = 5µme-h setup1

⊕/→ constructive

⊕/⊕ or /→ destructive

⊕/ interferenceweaker

28 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Electron-hole collision

Wide packets in energyε0 = ±175mK γ = 1

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

1

2|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

ε0 = 175mKγ = 1

L = 5µme-h setup1

e-h setup 2

⊕/→ constructive

⊕/⊕ or /→ destructive

⊕/ interferenceweaker

28 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Electron-hole collision

Wide packets in energyε0 = ±175mK γ = 1

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

1

2|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

ε0 = 175mKγ = 1

L = 5µme-h setup1

e-h setup 2

⊕/→ constructive

⊕/⊕ or /→ destructive

⊕/ interferenceweaker

28 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Electron-hole collision

Wide packets in energyε0 = ±175mK γ = 1

−0.6 −0.4 −0.2 0 0.2 0.4 0.60

0.2

0.4

0.6

0.8

1

2|SHBT|

δT (ns)

|SH

OM

(δT

)|(e2RT

)

ε0 = 175mKγ = 1

L = 5µme-h setup1

e-h setup 2

⊕/→ constructive

⊕/⊕ or /→ destructive

⊕/ interferenceweaker

28 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Energy width dependency

I2

I1

−L L

escape timeτe = α/Γα = 3.85psK

parametersε0 = 0.7Kv+ = 2v−L = 2.45µm

Exponential packetϕR(x) =

√2Γeiε0xeΓxθ(−x)

Very good agreement!!

29 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Energy width dependency

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

τe(ps)

SH

OM

(δT

)/(2S

HB

T)(e2

RT

)

theorie

escape timeτe = α/Γα = 3.85psK

parametersε0 = 0.7Kv+ = 2v−L = 2.45µm

Exponential packetϕR(x) =

√2Γeiε0xeΓxθ(−x)

Very good agreement!!

29 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Energy width dependency

0 50 100 150 200 250 300

0.2

0.4

0.6

0.8

τe(ps)

SH

OM

(δT

)/(2S

HB

T)(e2

RT

)

theorie

experiment

escape timeτe = α/Γα = 3.85psK

parametersε0 = 0.7Kv+ = 2v−L = 2.45µm

Exponential packetϕR(x) =

√2Γeiε0xeΓxθ(−x)

Very good agreement!!

29 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Conclusion

Interactions account for the observed loss of contrast!

The contrast depends on the energy resolution and theinjection energy of the packet.

Fast and slow excitations interference → lateral dips/peaks

30 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Conclusion

Interactions account for the observed loss of contrast!

The contrast depends on the energy resolution and theinjection energy of the packet.

Fast and slow excitations interference → lateral dips/peaks

30 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Conclusion

Interactions account for the observed loss of contrast!

The contrast depends on the energy resolution and theinjection energy of the packet.

Fast and slow excitations interference → lateral dips/peaks

30 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N

Non-interacting picture Charge fractionalization Interferometry at ν = 2

Thank you for yourattention!!!

31 / 31Interactions and charge fractionalization in an electronic Hong-Ou-Mandel interferometer

N