Spin + Electronics = Spintronics · Universität Regensburg Dieter Weiss, Universität Regensburg...

Post on 01-Sep-2019

3 views 0 download

Transcript of Spin + Electronics = Spintronics · Universität Regensburg Dieter Weiss, Universität Regensburg...

Universität Regensburg

Dieter Weiss, Universität Regensburg

Spin + Electronics = Spintronics

Electronic uses electrical charge of electrons….

= − ⋅

= ⋅ →

19

310

e 1.602 10 Cm 9.1 10 kg m *

= ±

μ = ⋅ 24B

1spin2

9.27 10 J/T

….but electron possesses also spin and hence a magnetic moment, responsible, e.g., for ferromagnetism

Universität Regensburg

GMR: Giant magnetoresistance

GMR read-out heads in hard drives

Grünberg group: PRB 39, 4828 (1989)Fert group: PRL,61, 2472 (1988)

ΔR/R

(%)

Universität Regensburg

TMR: tunnelling magnetoresistance

Julliere, Meservey, Tedrow, Moodera, Miyazaki…

Nonvolatile MRAM memory

Universität Regensburg

Freescale's MRAM – a new kind of memory chip

4Mbit memory array (2006)

Universität Regensburg

Memory cell of MRAM

Universität Regensburg

Functionality provided by metal-oxide devices

Howabb

outsem

iconduc

torspin

tronics

?

Universität Regensburg

Ferromagnetic semiconductor: Ga1-xMnxAs

Good Mn are substitutinal:•Act as acceptors providing holes•Holes mediate ferromagneticorder between 5/2-Mn moments

Bad Mn are interstitial:•Act as double donors thuscompensating holes

•Interstitial Mn is RKKY-inactive•Forms antiferromagnetic pairswith substitutional Mn

Curie-temperaturein mean field theory: MF 2 1/3

cT J p x∝

hole concentration Mn-concentrationT. Dietl (2000)

H. Ohno et al. (1992)

Universität Regensburg

Tuning of magnetization by electric fields

H. Ohno et al., Nature (2000)

Tunability of ferromagnetism

Universität Regensburg

Combination of ferromagnets with semiconductors?

Transistor: Most important device in electronics

Can electronics (logic)be combined with magnetism (memory)?

Review: Wolf et al., Science 294, 1488 (2001)Awschalom & Flattè, Nature Physics 3, 153 (2007)

10nm

Universität Regensburg

V

- vBeff

- vBeff

-v

Beff

V/2

Paradigmatic device: Datta-Das spin transistor

S. Datta & B. Das, Appl. Phys. Lett. 56, 665 (1990)

Universität Regensburg

V

Spin-injection

Spin-detectionTo avoid conductanceMismatch ⇒ tunnelingbarriers*

Spin-manipulation* 2

G(2 L/V )mΔθ = α

G. Schmidt et al., PRB 62, R4790 (2000)E. Rashba, Phys. Rev. B 62 R16267 (2000)A. Fert et al. , Phys. Rev. B 64 184420 (2001)

*

Paradigmatic device: Datta-Das spin transistor

L

Universität Regensburg

X. Lou et al, Nature Physics 3, 197 (2007)

Detection of spin transport in lateral Fe/GaAs devices

Detection of clear spin signal and Hanle effect only in non-localtransport geometry:

Universität Regensburg

X. Lou et al, Nature Physics 3, 197 (2007)

Detector signal: Hanle effect:

Universität Regensburg

Outline

Tunneling magneto-resistance

Fe/GaAs/Fe

Spin-orbit interactionin 2DEG

Separation of Rashba-and Dresselhaus

contributions

TAMRTunneling anisotropicmagnetoresistance

Universität Regensburg

Beff

-(Z-1)e -(Z-1)e-(Z-1)e

Spin-orbitinteraction

- Bohr magneton(μB)

Beffdue to orbital motion= ・

Origin of spinOrigin of spin--orbit interactionorbit interaction

Dirac:

SO B 2E pˆ ˆH2mc

×⎡ ⎤= −μ σ ⋅ ⎢ ⎥⎣ ⎦ Zeeman Bˆ ˆH B= −μ σ ⋅

eff 2E pB2mc

×=

Universität Regensburg

Origin of electric field E in solidsOrigin of electric field E in solids

Bulk inversion asymmetry (BIA)Lack of inversion symmetry in III-V semiconductors"Dresselhaus contribution γ"

Structure inversion asymmetry (SIA)due to macroscopic confining potential: "Rashba contribution α". Tunable by external electric field!

Interface asymmetry

2(z)Ψ

V(z)

Universität Regensburg

2 2

SOkˆ ˆH H with

2m= +

x y y x x x y ySOˆ H ( k k ) ( k k )= α σ − σ + γ σ − σ

Pauli spin matrix

Spin-orbit interaction in 2DEG: Rashba & Dresselhaus terms

Rashba Dresselhaus

tunable by gate voltage

2 2kE k2m

= ± α

Universität Regensburg

Description of zero-field spin splitting by Beff

= α σ − σ + γ σ − σ σ ⋅SO x y y x x x ey fy fˆ H ( k k ) ( ~ ˆ Bk k )

Rashba Dresselhaus

x x y y z zeff B B Bˆ Bσ ⋅ = σ + σ + σ

Comparison of coefficients. E.g. only Rashba contribution: yeff

x

kB

k⎛ ⎞

∝ ⎜ ⎟−⎝ ⎠

effB

E.A. de Andrada e Silva PRB 46, 1921 (1992)

Universität Regensburg

Presence of Rashba & Dresselhaus contributions to SO:

Rashba orDresselhaus

Rashba and Dresselhaus

= ± α − γ2 2kE ( ) k2m

= ± α + γ2 2kE ( ) k2m

]

Universität Regensburg

Spin-galvanic effect:

Ganichev et al., Nature , 153 (2002)417

jx

SyM M

2DEG

α αβ ββ

= ∑j Q S

In plane spin polarization is prepared by anin-plane magnetic field (like Hanle effect)

A spin-polarization in y-directionis expected to drive a current in x-direction (C2v symmetry)

Spin polarization drives an electrical current:S

[110][110]

Universität Regensburg

Spin-galvanic-effect ….

Ganichev et al., Nature , 153 (2002)417

4.2 K

Universität Regensburg

Rashba (γ=0) Dresselhaus (α = 0) α γ ≠both ( and 0)

γ −α⎛ ⎞∝ ⎜ ⎟α −γ⎝ ⎠

j SDirection of photocurrent:

Universität Regensburg

Direction of photocurrent: γ −α⎛ ⎞∝ ⎜ ⎟α −γ⎝ ⎠

j S

Rashba (γ=0) Dresselhaus (α = 0) α γ ≠both ( and 0)

Universität Regensburg

D Rj cos( ) j sin(j( )) ϕ+ +θ= θ − ϕθ

ϕθ S

j

Direction of photocurrent:

S. D. Ganichev et al., PRL 92, 256601 (2004)

γ −α⎛ ⎞∝ ⎜ ⎟α −γ⎝ ⎠

j S

Rashba (γ=0) Dresselhaus (α = 0) α γ ≠both ( and 0)

Universität Regensburg

S

B

θ = θ + ϕ + θ − ϕD Rj( ) j cos( ) j sin( )

ϕ: direction of spin polarization S, adjusted by direction of B

θ: direction of photocurrent

Experiment: angular dependence of photo current

Sample*:InAs/Al0.3Ga 0.7Sb QWnS = 1.3 x 1012 cm-2

μ = 20.000 cm2/Vs at RT

* from J. de Boeck and S. Borghs, IMEC

FIR-Laser: λ = 148 μm, 10 kW

θj( )

Universität Regensburg

Experimental result: angular dependence of photocurrent

= − RDj j j

+= RDj j j

α= γ ≈R D/ /j j 2.1

S. D. Ganichev et al., PRL 92, 256601 (2004)

ϕ = °45

ϕ = − °45

Room temperature

Universität Regensburg

Experiment: continued

= γα ±≈DR / / 2j .1 ( 0j .25)also here:

theoretical value from k.p calculations: α/γ = 1.85 Pfeffer, Zawadzki, PRB59, R5312 (1999)

ϕ = °0S. D. Ganichev et al., PRL 92, 256601 (2004)

Universität Regensburg

Magnetic Tunnel JunctionsT. Miyazaki and N.J. Tezuka JMMM 139, L231 (1995);J.S. Moodera, et al. PRL 74, 3273 (1995).

Small TMR and amorphous barrier (Al2O3)⇒ Julliere model

Universität Regensburg

Tunneling between ferromagnets

Jullière model:

1 2 1 2

1 2 1 2

I D D D DI D D D D

↑↑ ↑ ↑ ↓ ↓

↑↓ ↑ ↓ ↓ ↑

∝ +

∝ +

iD = Density of states in contact 1, 2

Spin polarization:

Tunneling magnetoresistance (TMR):

1 1 2 21 2

1 1 2 2

I I D D D DPP

I I D D D D↑↑ ↑↓ ↑ ↓ ↑ ↓

↑↑ ↑↓ ↑ ↓ ↑ ↓

− − −= ⋅ =

+ + +

1 2

1 2

R R I I 2PPTMRR I 1 PP

↑↓ ↑↑ ↑↑ ↑↓

↑↑ ↑↓

− −= = =

Universität Regensburg

P TMR

Fe

Co

Ni

44% 48%

34% 26%

11% 1%

DOS and P: bcc iron

Energy (eV)

dens

ityof

sta

tes

EF

1 2

1 2

R R 2PPTMRR 1 PP

↑↓ ↑↑

↑↑

−= =

Universität Regensburg

[1] Yuasa et al., Jpn. J. Appl. Phys. 43, L558 (2004); [2] Yuasa et al., Nature Mater. 3, 868 (2004); [3] Parkin et al., Nature Mater. 3, 862 (2004); [4] Djayaprawira et al., Appl. Phys.Lett. 86, 092502 (2005)

Huge TMR in epitaxial Fe/MgO/Fe systems

Universität Regensburg

coherent transport

electron

scattering

electron

Incoherent vs. coherent tunneling

amorphousbarrier,e.g. Al-O

crystallinebarrier,e.g., MgO

fm electrode

fm electrode

Jullière model Landauer-Büttikerapproach

Universität Regensburg

Yuasa et al., Nature Materials 3, 868 (2004)

Huge TMR in epitaxial Fe/MgO/Fe systems

Universität Regensburg

Band structure of iron

symmetry of statesis relevant!

Universität Regensburg

Fe majority Δ1, ∆5, ∆2’Fe minority ∆2, ∆5, ∆2’

MgO lets through ∆1 mostly

Bands of MgOwith smallest κ

MgO acts as spin filter ….calculation: Heiliger et al. Phys. Rev. B 2006

Universität Regensburg

Fe FeGaAs

EF5nm – 10nm

Spin-polarized tunneling through GaAs barriersSpin-injection: Spin-polarized tunneling through Schottky barrier →

upper limit for spin-injection4-point measurements

Universität Regensburg

X. Lou et al, Nature Physics 3, 197 (2007)

Detection of spin transport in lateral Fe/GaAs devices

Detection of clear spin signal and Hanle effect only in non-localtransport geometry:

How about tunneling in metal-semiconductor tunneling structures?

Universität Regensburg

Fe FeGaAs

EF5nm – 10nm

Spin-polarized tunneling through GaAs barriersSpin-injection: Spin-polarized tunneling through Schottky barrier →

upper limit for spin-injection4-point measurements

Universität Regensburg

Fe

GaAs

AlGaAs

Fe

GaAs

TEM-micrograph:C.-H. Lai, Tsing Hua University, Taiwan

Universität Regensburg

TMR: crystalline tunneling barrier, polycrystalline iron

at 4.2 K……

B (T)

R (Ω

)TMR= 5.6%P = 16.5%

Co/Fe/GaAs(8nm)/Fe

4.2K5 mV bias

J. Moser et al. Appl. Phys. Lett. 89, 162106 (2006)

Universität Regensburg

…and at room temperature

TMR= 1.55%P = 8.8%

Co/Fe/GaAs(8nm)/Fe

4.2K5 mV bias

B (T)

R (Ω

)

J. Moser et al. Appl. Phys. Lett. 89, 162106 (2006)

Universität Regensburg

substrate

GaAs8 nm

Growth of GaAs barrier in molecular beam epitaxy system

Subsequently, the wafer is transferred to a magnetronsputtering system to deposit iron epitaxially

J. Moser et al. Appl. Phys. Lett. 89, 162106 (2006)

Device fabrication: one epitaxial Fe/GaAs interface

Universität Regensburg

UHV-Transport-System

HL-MBE Sputteranlage

Magnetron-Sputtering

SystemMBE

Growth of epitaxial Fe/GaAs interface

W. Wegscheider

Universität Regensburg

Substrate

GaAs8 nmFe

Substrate

FeGaAs

Substrate

Fe

Device fabrication

Universität Regensburg

AlGaAs

Fe

GaAs

TEM-micrograph:C.-H. Lai, Tsing Hua University, Taiwan

Universität Regensburg

Tunneling barrier sandwiched between two ferromagnetic layers

Experiments in TMR geometry

Fe

Fe

GaAs

Universität Regensburg

epitaxialinterface

V

Bias dependence of TMR

J. Moser et al. Appl. Phys. Lett. 89, 162106 (2006)

1 2

1 2

2PPTMR1 PP

=−

Jullière

Universität Regensburg

Outline

Tunneling magneto-resistance

Fe/GaAs/Fe

Spin-orbit interactionin 2DEG

Separation of Rashba-and Dresselhaus

contributions

TAMRTunneling anisotropicmagnetoresistance

Universität Regensburg

Are always two ferromagnetic layers necessary to see a magnetizationdependent resistance?

Our model system: Fe/GaAs/Au with epitaxial Fe/GaAs interface

R1

M

R2

M

1 2R R≠

FeGaAsAu

Spintronic with only one magnetic layer

Fe

GaAs

Au

Universität Regensburg

So far only observed for ferromagneticsemiconductors: (Ga,Mn)As/Al2O3/Au:

Gould et al. PRL 93, 117203 (2004)

TAMR: Tunneling Anisotropic Magnetoresistance

Non-epitaxial interface & amorphous barrier

Universität Regensburg

90°

[110]

[110]

-0,3 -0,2 -0,1 0,0 0,1 0,2 0,3918,0

918,5

919,0

919,5

920,0

920,5

R (Ω

)

B (T)

"TAMR" = -0,2 %

Tunneling magnetoresistance: B along [110] (at +89 mV)-

J. Moser et al., cond-mat/0611406

Universität Regensburg

-0,2 -0,1 0,0 0,1 0,2918,0

918,5

919,0

919,5

920,0

920,5

R (Ω

)

B (T)

"TAMR" = 0,08 %

[110]

[110]

Tunneling magnetoresistance: B along [110] (at +89 mV)

J. Moser et al., cond-mat/0611406

Universität Regensburg

measured at T = 4.2 K and -90 mV

B = 0.5 Tesla

Co/Fe(epi)/GaAs(8nm)/Au

R

M

FeGaAsAu

J. Moser et al., cond-mat/0611406

Angular dependence of TAMR: negative bias

B

Universität Regensburg

measured at T = 4.2 K and +90 mV

B = 0.5 Tesla

Co/Fe(epi)/GaAs(8nm)/Au

J. Moser et al., cond-mat/0611406

Angular dependence of TAMR: positive bias

R

M

FeGaAsAu

T-dependence: see Lobenhofer et al.HL 19.4 Tue 11:30 H14

Universität Regensburg

Fe Au

zl zr

z

EF

φb

0 z BR DH H H H H= + + +

BR x y y x ii l r

i,

1H ( p p ) (z z )=

= σ − σ δ −α∑

z(z)H2

Δ= − ⋅n σ

x x y yD1H ( p (z

z)p )

z∂ ∂⎛ ⎞= σ − σ ⎜ ⎟∂ ∂⎝

γ⎠

2

01H V(z)

2 m(z)⎡ ⎤

= − ∇ ∇ +⎢ ⎥⎣ ⎦

2rl||

1|3 |

,1T (E,keI dEd k [f (E) f (E)])

(2 ) σσ=−

= −π

∑ ∫

particle transmissivity

lα rαγA. Matos-Abiague & J. Fabian cond-mat/0702387

Modelling

Universität Regensburg

lα γ

||w(k ) =y x

x y

k - k- k k 0

α γ⎛ ⎞⎜ ⎟

α + γ⎜ ⎟⎜ ⎟⎝ ⎠

2[110]||

Anisotropy determin ed by

[ ( )] R/R 1 ~ (cos2 1)⋅ → − αγ φ −n w k

Anisotropy vanishes for 0αγ → J. Moser et al., cond-mat/0611406

FeGaAs

Au

n

||w(k )

x

y

z

Origin of anisotropic resistance: SO-interaction duringtunneling (Rashba & Dresselhaus contribution)

Fe Au

zl zr

z

EF

φb

Universität Regensburg

γ = 0

α > γ > 0 α < 0γ > 0

|| ( )ϕkw

( , )x yk kw

α = 0

[100]kx

ky

[100]

kx

ky

ky

[100]

kx

[100]

kx

ky

Universität Regensburg

Anisotropy: Interference of Rashba & Dresselhaus

[100]kx

[110]

[100]

kx

ky[110]

Universität Regensburg

Funding by:

Spin-orbit interaction: Separation of Rashba- and Dresselhauscontributions

Spintronics is interesting both from a fundamental physics point of view as well as from an application perspective. Interplay of newmaterials, new phenomena and new concepts.

Summary

TAMR: Due to interference of Rashba- and Dresselhaus contributionsin epitaxial fm/semiconductor systems.

Many students and colleagues contributed to the work I presented. Many thanks!